# Pulsars

#### Fabio Frescura

- Centre for Theoretical Physics
   University of the Witwatersrand
- Rhodes University
- Hartebeesthoek Radio Astronomy Observatory

# **Purpose**:

#### To outline

- Some interesting properties of pulsars
- Some of the current pulsar research topics at HartRAO

# Outline

- Discovery of pulsars
- What is a pulsar
- Two interesting pulsars
  - Crab
  - Vela
  - Some aspects of the HartRAO pulsar research



# I: Discovery of pulsars

- 1932 : Discovery of neutron by Chadwick
  - News reaches Bohr, who was hosting Landau
  - Lev Landau spends day speculating on implications
  - Landau postulates existence of stars made completely of neutrons
  - Landau does not develop the theory
- 1934 : Baade & Zwicky propose existence of neutron stars. Propose
  - Rapid rotation

- Ultra high density
- Formation result of supernova explosion

1939 : Oppenheimer & Volkoff theoretically predict

Mass

Density

Diameter

1964 : Hoyle, Naarlikar & Wheeler argue for ultra strong magnetic field on a neutron star at the centre of Crab nebula

1967 : Pacini proposes that rapid rotation of highly magnetised neutron star is what powers Crab nebula

- 1968 : Hewish et. al. announce discovery of 1.377 s pulsating radio source at 81.5 MHz
- 1968 : Gold argues that the pulsating radio source is a rotating neutron star
- Identification not immediate :
  - white dwarf stars were thought better candidates
  - Pulsations were thought to be vibrations
     possible
  - 1968 : Vela & Crab pulsars discovered
    - Vela period : 89 ms
    - Crab period : 33ms

17/01/16

 Debate settled – only neutron stars could vibrate or rotate 30 times per second 1969 : Rotation-vibration debate settled -

- Rotation would slow down
- Vibration can damp, but not slow
- Spin-down measured for Vela and Crab
- Further confirmation : both Vela & Crab in supernova remnants



# II : What is a pulsar ?

Rapidly rotating neutron star
Very dense
Mass : 1.2 to 1.4 solar masses
Radius : 10 – 15 km
Huge magnetic field : 10<sup>12</sup> gauss

# **Magnetic field**

- Magnetic & rotation axes misaligned
- Magnetic field rotates
  - Magnetic dipole radiation
    - Energy loss
    - Gradual spin down
  - Huge induced electric field
    - Electrons dragged out of iron surface
    - Currents along field lines
    - Particle anti-particle cascades



# Radiation

- 2 types of magnetic field lines
  - Open
  - Closed
- Particles accelerate along lines
  - Open field lines : particle beam
  - Closed field lines : particles trapped
- Accelerated particles radiate : curvature radiation
- Open field lines : beaming effect
- Closed field lines : cyclotron

### Internal structure



# **III: 2 Interesting Pulsars**

CrabVela



# Crab pulsar



Optical

Infrared

Radio

X-ray

#### Composite







# Infrared



![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

![](_page_18_Picture_0.jpeg)

# Crab pulsar - Chandra

![](_page_19_Picture_1.jpeg)

- dynamic rings
- wisps and jets of matter and antimatter
- inner ring about one light year across.

# **Vela Pulsar**

Displays characteristics similar those of Crab pulsar

- Supernova remnant
- Rapid motion
- Bow shock wave
- Characteristic rings
- Particle jets

![](_page_21_Figure_0.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

# Similarity of structure

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

# HartRAO Pulsar Research

![](_page_27_Picture_1.jpeg)

# **The Programme**

- Began 1984
- Person responsible 1984 1996 Claire Flanagan
- Monitors 27 pulsars
  - Each once every 2 weeks
  - Vela, daily, if no VLBI
  - 15-18 yrs data on each
  - Most complete and extensive data spans in world on this sample

# **Observations : Pulse arrival times**

![](_page_29_Picture_1.jpeg)

EM beam is locked onto solid crust Each revolution, 1 pulse Measure pulse arrival times Convert to arrival time at barycentre of solar system Analysis of arrival times reveals what the crust is doing

![](_page_30_Figure_0.jpeg)

# Analysis

Rotation frequency vs. arrival times is approximately straight

- Slope almost, but not quite, zero
- Small slope reveals gradual spin down due to radiation effects

Spin down expected to be nonlinear in long term (10<sup>3</sup> yrs)

- Fit data with polynomial, quadratic or cubic, etc.
- Read basic parameters from fit
- Subtract fit from point : residuals
- Residuals reveal fine details of rotation behaviour
  - Residual structure of two types:
    - Systematic variation

- Random fluctuations, or rotation noise
- Residuals give information about physical processes in and around pulsar

![](_page_33_Figure_0.jpeg)

Timing residuals of 4 pulsars

# Systematic oscillations

Possible mechanisms

- Binary companion
- Precession
- Oscillation of superfluid interior
- Noise

- Others?
- Postulate, model, predict, compare

# Precession

- Asymmetric mass distribution : 2 possibilities :
  - Axisymmetric : oblate spheroid
  - Non-axisymmetric : most general shape
- Most natural motion : precession
- Two types of motion :
  - Torqued

- Not torqued, or free
- For pulsars, weakly torqued
- 1<sup>st</sup> approximation : free, axisymmetric

# What is precession?

- Zero torque = constant angular momentum : defines fixed axis in space
- Axis of symmetry inclined at constant angle to fixed angular momentum direction : wobble angle
- Axis of symmetry spins rapidly around fixed angular momentum axis – wobble, or space precession : determines pulse arrival time frequency
- Body of pulsar spins slowly around symmetry axis : modulates pulse arrival time with long period oscillation, precession frequency

![](_page_37_Figure_0.jpeg)

The body and nodal frames.

![](_page_37_Picture_2.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

The reference plane and the "merry-go-round".

![](_page_39_Figure_0.jpeg)

Rotation axis not coincident with either angular momentum axis, or axis of symmetry : seen from pulsar,

- moves slowly around symmetry axis
- at precession frequency
- in forward precessional motion
- like motion of earth : Chandler wobble

![](_page_41_Figure_0.jpeg)

#### Animation of precessing pulsar with offset beam.

![](_page_42_Picture_1.jpeg)

Body Frame Space Frame

# **Effect on residuals**

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

# Timing irregularities

Huge moment of inertia makes pulsars stable time keepers, but period of rotation not constant :

Radiative slow-down

- Systematic oscillation of rotation rate
- Stochastic, or random, variations of rotation rate : i.e. timing irregularities

- 2 types of timing irregularities :
  - Timing noise
  - Glitches : sudden increases of rotation rate
- Typically, glitches are increases of rotation rate of 1 part in a million
- Believed that all pulsars glitch
- Glitching believed to be a function of age
- New pulsars are active : glitching is generally frequent and weak
- Old pulsars are more stable : glitching infrequent and large

![](_page_50_Figure_0.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

Magnification of 1988 spin up

![](_page_50_Figure_3.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

Time

![](_page_53_Figure_0.jpeg)

# Summary

- Regular timing behaviour reveals rotational behaviour of crust
- Oscillatory timing behaviour reveals underlying dynamics of rotation
- Timing noise reveals nature of stochastic processes in pulsar interior, surface and magnetosphere
  - Glitches reveals nature and dynamics of pulsar superfluid interior

# What radio astronomers do :

- Work all day
- Work all night
- Work when sun shines
- Work for moonshine
- Work when cloudy
  - Work when dry

# In contrast,

# What optical astronomers do ....

![](_page_57_Figure_0.jpeg)