Useful and Useless Cleaning Methods in CCD Imaging

> Hannes Calitz Boyden Observatory

Astronomical vs Consumer cameras?

Astronomical	Consumer
Cooled	Not cooled
Fixed sensitivity	Adjustable sensitivity (ISO)
No in camera functions	All in camera functions
Fixed optical setup	*Variable* optical setup
Better quality CCD	Poorer quality CCD/CMOS detector

What is a CCD Image?

- Combination signal of
 - photons
 - random electronic noise due to heat
 - amplification noise
 - cosmic rays
- Electronic representation of light reaching the sensor

What happens to the photons?

- Depends on the light path
 - mirrors (reflection/absorption)
 - lenses (refraction/absorption)
 - filters (absorption)
 - dust (absorption/scattering)
 - stray light (addition)

What is electronic noise?

- Due to heat
 - Resistance of material
- Due to amplification
 - Resistance of contact layers in semiconductor material
 - Random noise added to the system by electricity applied
- Bad pixels

Do CCD's deliver unmeasureable images?

- Useful images are obtained if we can

 subtract the effect of electronic noise
 compensate for the influence of the dust, reflections and stray light
- Useless images will result if
 - we just apply enhancing techniques
 - averaging/smoothing/noise reductions
 - unsharp masking
 - enhancing of colours etc.

Noise terms

- Electronic noise
 - Bias noise
 - readout process
 - amplification
 - Dark Current
 - buildup of electronic noise over time in keeping the pixels sensitive to light
- Optical Noise
 - Flat frames
 - Image of optical obstacles and readout characteristics of CCD

Requirements for CCD imaging

Constant temperature of CCD chip

Bias frames

- Image of electronic readout noise alone
- Take with closed shutter and shortest exposure time possible
- Average 20-40 images and combine into a master bias frame

Dark Frames

- Take at same temperature as images
- Use closed shutter and same exposure times as image
- Take around 20 images
- Average and combine into a master dark for that temperature
- Stay constant over a few months time

Flat Images

- Compensate for internal reflections, dust on lenses, filters and mirrors
- Expose 60%-80% of saturation counts
- Expose for each different optical setup
 - Cleaning
 - Filters
 - Baffles
 - Dew shield
 - Aperture change
 - Should be EXACTLY the same setup as when image was taken

Reduction Procedure

Replace BAD PIXELS

DARK

RAW Image | FLAT |

Subtract BIAS

IMAGE - DARK

FLAT

- read your data from disk or tape,
- convert your data to a format compatible with your software,
- inspect the original images and discard those that are faulty,
- flag all the known faulty pixels as `bad' or replace them with invented, reasonable values,
- create master bias and dark images for subsequent use in removing the dark and bias signal from raw images of target astronomical objects,
- for each filter, create a master flat field frame defining the pixel-to-pixel sensitivity variations and then flat field each of the images,
- for each filter, align and add the individual images of each target astronomical object to produce a master image of the object

Software

- Linux
 - -IRAF
 - Starlink
 - MIDAS
- Windows
 - MaxIm DL
 - CCDSoft

Example : Temperature influence

All images scaled between 2100-2300 counts

Example : Filter influence

2900

2780 2800 2820 2840 2860 2880

760

Example : Correcting image

