

OPTICAL COATINGS FOR AMATEUR ASTRONOMERS

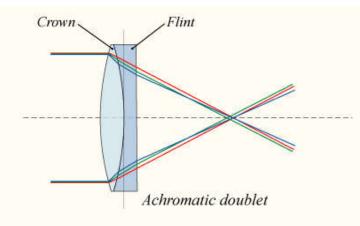
8th ASSA Symposium – 7 August 2008 Andrie van der Linde

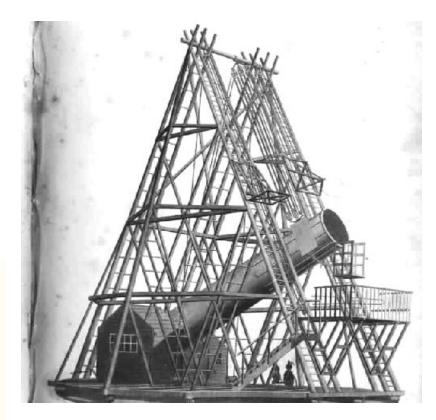
Eridanus Optics CC

Coatings are everywhere!

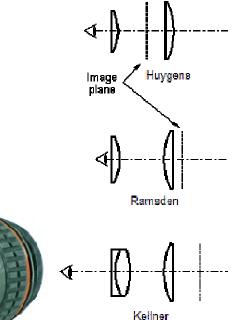
- Telescopes
 - Meade: UHTC
 - Celestron: XLT
- Binoculars: Multi coated
- Eyepieces
 - (Fully) Coated
 - (Fully) multi coated
 - Phantom coated (Baader Planetarium)
- Filters
 - Phantom coated

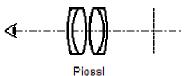
Why apply coatings to optics?

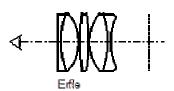

We want to see the more!


- Large aperture
 - More light
 - Smaller diffraction limit
 - Higher magnification
 - More detail!
- Drawbacks (Technical)
 - Chromatic aberration
 - Spherical aberration
 - Coma
 - Astigmatism
- Drawbacks (Practical)
 - Handling
 - Cost

What is the solution?


- Achromatic lens
- Apochromatic lens
- High F/#
 - Long focal length
- Reflector/Catadioptric
- Eyepiece design


An eyepiece is an eyepiece?


- Different designs/ implementations
 - Focal length
 - Field of view
 - Field flatness/distortion
 - Eye relief
 - Coma correction
 - Color correction
- Eyepiece complexity
 - Number of lenses used
 - Light loss due to reflections

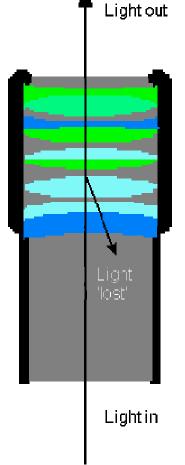
How much light is lost?_

- Uncoated:
 - Air/Crown: 4.3%
 - Air/Flint: 5.5%
 - Crown/Flint: 0.08%
 - Air/Glass (typ): 5%
- Coated:
 - Single layer: 2%
 - Multi-coated: 1%
 - Super-coated: <0.5%

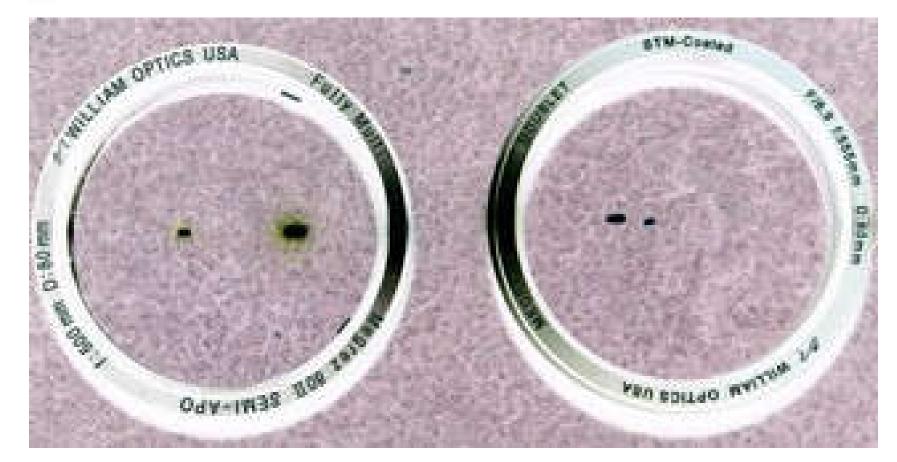
- Plossl – Multi-Coated: 11.6%
 - Fully MC: 4%
- Hyperion (5 lensgroups)

Light lost: <----

- Uncoated: 40%
- Phantom coated: 4.9%

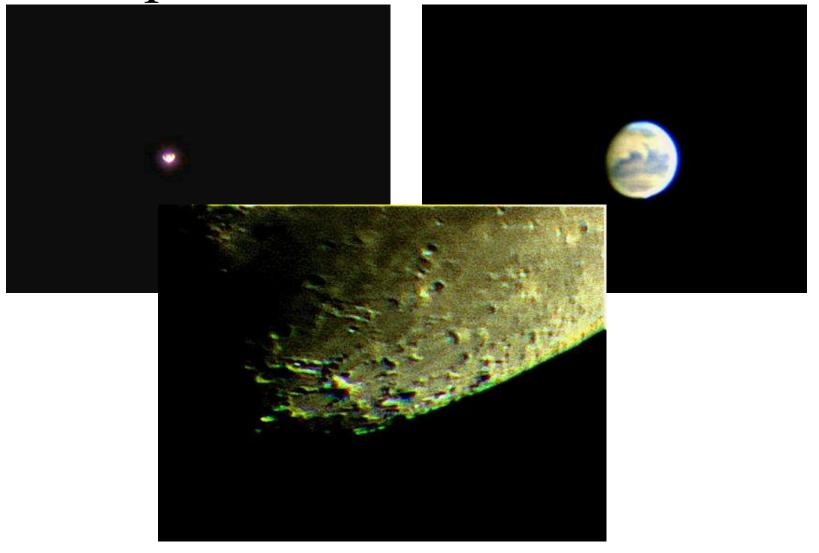

Phantom Group Coatings

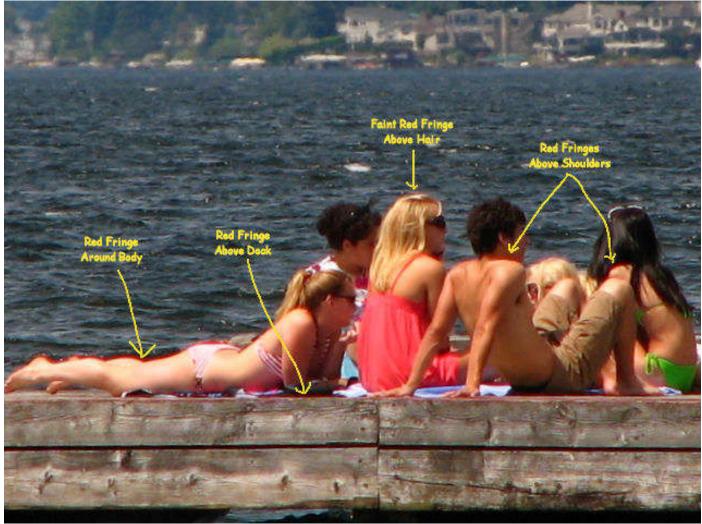
- 0.2% maximum from 490 to 540 nm
- 0.5% maximum from 400 to 470 and from 560 to 700 nm
- Highest efficiency around 520 nm



That is not the only bad news!

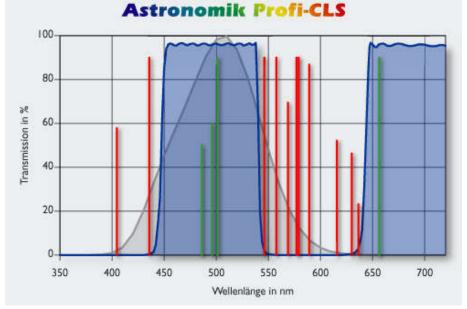
- 11.6% loss of light (Multi-coated Plossl)
 - 6% loss in light gathering 'aperture'
- 11.6% of received light 'trapped' inside eyepiece (13% of light out)
 - Self generated 'light pollution'
 - Reduced contrast!
 - Ghost images
- Modern high performance eyepiece
 - Uncoated: 40% loss
 - Supercoated: 5% loss
- In partially coated optics, the wrong surface is typically coated!

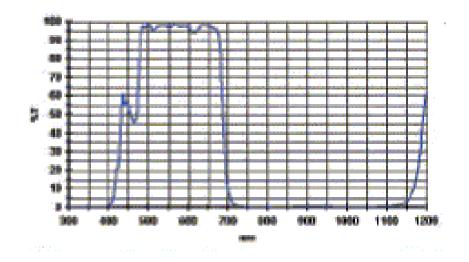



What are the other uses of coatings?

- Optical coatings are also used to:
 - Hide optical limitations in design and manufacturing
 - Chromatic aberration
 - Glare
 - Remove/filter out unwanted effects
 - Light pollution and sky glow
 - Chromatic aberration
 - Improve light transmission
 - Filters
 - Barlow lenses

Examples of chromatic aberration




More examples of chromatic aberrations (on other forms of heavenly bodies)

Is there a solution?

- High F/# (size)
- Viewing/imaging in narrow band
- Filter out undesirable wavelengths while passing through desirable wavelengths
 - Material choice
 - Coatings

How to test your eyepiece's coatings

- Stand in a place where a bright light can shine over your shoulder. (With better alignment you can see reflections from deeper surfaces)
- Orient the eyepiece until you can observe a number of reflections from the eyepiece.
 - The number of reflections is an indication of the complexity of the eyepiece
 - The brightness of the reflections is an indication of the losses
 - Also look at the colour of the reflections since reflections from flat surfaces will seem bright even though it may have good coatings applied
- View into the eyepiece to see the apparent field of view

- Carl Zeiss Vision for sponsoring the demonstration lenses
- Thomas Baader for providing me with technical information on the Phantom group Coatings

Contact

- Eridanus Optics CC
 - www.eridanusoptics.com
 - andrie@eridanusoptics.com
 - $-083\ 632\ 4894$
- Questions