THE

ASTRONOMICAL

SOCIETY

OF

SOUTH AFRICA

HANDBOOK FOR
1953

President:
Mr. J. C. Bentley
Vice-Presidents:

Dr. A. D. Thackeray
Dr. David S. Evans
Dr. W. H. van den bos

Hon. Secretary:
Mr. A. Menzies
Hon. Treasurer:
Mr. G. Orpen
Members of Council:
Mr. A. F. Finnis, Dr. W. S. Finsen, Dr. P. Kirchhoff, Prof. G. H. Menzies, Dr. R. H. Stoy and Mr. S. C. Venter

The Astronomical Society of South Africa was formed in July, 1922, by the amalgamation of the Cape and Johannesburg Astronomical Associations which had been in active existence for several years. The declared objects of the Society are:-
(1) The encouragement and stimulation of the study of Astronomy in South Africa;
(2) The association of observers and their organisation in the work of astronomical observation and research;
(3) The dissemination throughout South Africa of such current astronomical information as may be helpful to observers;
(4) The publication from time to time of the results of the work accomplished by the Society.
Membership is open to all who are interested in Astronomy. The Society issues a series of duplicated notes monthly and distributes to each member a copy of Sky and Telescope, an illustrated monthly astronomical magazine published in America. There are also a number of autonomous local centres which hold regular meetings. Details of these will be found on the back cover.

All communications about the Society should be addressed to the Hon. Secretary, Astronomical Society of South Africa, c/o The Royal Observatory. Observatory. Cape.

CONTENTS

Page
Time 2
Julian Date, Sun's Transit and Siderial. Time at 0 h. and 18 h. 4
Sun, Moon and Planets 5
Phases of the Moon... 5
Perigee and Apoger 6
Bright Variabre Stars 6
Lunar Occulations 7
The Planets 8
Geocentric Longtrude of Sun and Planits 10
Meteor Calendar 11
Astronumical Diary 14
Transits of Mercury and Venus 19
Special Articles in Previous Handhooks 22

Mr. S. C. Venter has contributed the data for the Meteor Calendar and Mr. R. P. de Kock has calculated the information on which the Planetary Diagram is based.

All the times given in this booklet are South African Standard Time,

TIME

that is, mean solar time for a meridian 30° (or two hours) east of Greenwich.

To get the local mean time at other places in the Union the longitude difference shown in Table I must be applied to the ordinary S.A.S.T.

TABLE 1

Correction for Longitude

Bloemfontcin		-15	m .	Grahamstown		-14
Cape Town		-46	"	Johannesburg		-08
Durban		+04	"	Port Elizabeth		-18
East London		-08	"	Pretoria		-07

Conversely, to get the S.A.S.T. from the local mean time these longitude corrections must be applied with the sign reversed. Thus, the S.A.S.T. of local mean noon (i.e., 12 h .00 m . local mean time) at Port Elizabeth is 12 h .18 m .

Owing to the fact that the earth does not go round the sun with uniform circular motion in the plane of the earth's equator, the local apparent solar time (i.e., the time shown by a sundial) differs from the local mean solar time by a quantity which is usually referred to as the "Equation of Time." The Equation of Time must be added to the mean solar time to give the apparent solar time. Its effect is shown in the third column of Table II which gives the S.A.S.T. of noon, that is, of the Sun's transit over the meridian.

Example: Find the S.A.S.T. of apparent noon at Port Elizabeth on November 1.

$$
\begin{array}{llll}
\text { S.A.S.T. of noon at } 30^{\circ} \text { E. } & & & \text { hr. min. } \\
\text { Correction for longitude } & \ldots & \ldots & 11 \\
44 \\
\text { S.A.S.T. of noon at Port Elizabeth } & \ldots & & 18 \\
\hline
\end{array}
$$

For many purposes sidereal time, that is, local time as measured by the stars, is extremely useful. The sidereal time can be found by applying the S.A.S.T. (on a 24 -hour basis) to the corresponding "Sidereal Time at 0 hours S.A.S.T." which is given in the fourth column of Table II, and correcting for longitude by means of Table 1. A further small correction is needed to allow for the four-minute difference in length between the solar and sidereal day. This correction is given below.

For times between S.A.S.T.:-

03.00 and 09.00 add 1 minute			
09.00	15.00		2 minutes
15.00		21.00	,
21.00	3	23.59	,
	4	4	

Example: Find the sidereal time at 8.15 p.m. on October 1 at Port Elizabeth.

For recording the time of variable star observations, the Julian Day calendar is usually used. This numbers the days consecutively from the beginning of the Julian Era in 4713 B.C. The Julian Day begins at Greenwich mean noon, that is, at 14.00 (2 p.m.) S.A.S.T.

The position of a star in the sky is fixed by its right ascension and and declination, much as the position of a point on the carth is fixed by its longitude and latitude. In fact the right ascension and declination of any star are the longitude and latitude of the point on the earth directly bencath it at zero hours sidereal time at Greenwich. Latitude and declination are always measured in degress north or south of the equator. Longitude and right ascension are measured either in degrecs or in time, 360° being equal to 24 hours (1° equals 4 minutes; 15^{\prime} equals 1 minute). Right ascension is always measured eastwards from the zero celestial meridian, and so is the equivalent of the longitude measured eastwards from the Greenwich meridian.

For considering the motions of the Sun, Moon and Planets, the system of co-ordinates known as celestipl latitude and longitude is very convenient. These co-ordinates define the position of a celestial body with reference to the Ecliptic in exactly the same way as right ascension and daclination define its position with reference to the Celestial Equator. The (celestial) latitude is the angular distance of the body north or south of the Ecliptic, while the longitude is the distance from the Vernal Equinox as measured eastwards along the Ecliptic. Celestial latitude and longitude are usually measured in degrees.

The Ecliptic is defined by the apparent path of the sun about the earth. The latitude of the sun is therefore always (approximately) zero, whilst its longitude increases by approximately 1 "per day.

TABLE II

Date		$\begin{gathered} \text { Julian Date } \\ \text { of } \\ 14 \text { hours } \end{gathered}$	$\begin{aligned} & \text { S.A.S.T. of } \\ & \text { Sun's } \\ & \text { Transit } \end{aligned}$			Sidereal Time				
		at 0 hrs .				at 18 hrs .				
January	1		2,434,379.0	12	03	33	06		00	
,	11	389	12	07	56	07		01	23	
	21	399	12	11	22	08	00	02	03	
February	1	410	12	13	39	08	43	02	46	
,"	11	420	12	14	20	09	23	03	26	
	21	430	12	13	44	10	02	04	05	
March	1	438	12	12	28	10		04	37	
"	11	448	12	10	09	11	13	05	16	
,	21	458	12	07	19	11	53	05	56	
April	1	2,434.469.0	12	03	58	12	36	06	39	
"	11	479	12	01	07	13	15	07	18	
"	21	489	11	58	44	13	55	07	58	
May	1	499	11	57	04	14	34	08	37	
"	11	509	11	56	17	15	14	09	17	
,	21	519	11	56	27	15	53	09	56	
June	1	530	11	57	38	16	36	10		
	11	540	11	59	26	17	16	11	19	
,	21	550	12	01	34	17	55	11	58	
July	1	2,434,560.0	12	03	39	18	35	12	38	
.,	11	570	12	05	20	19	14	13		
,",	21	580	12	06	17	19	54	13		
August	1	591	12	06	14	20	37	14	40	
"	11	601	12	05	10	21	16	15	19	
Sen,	21	611	12	03	09	21	56	15	59	
September	1	622	12	00	02	22	39	16	42	
"	11	632	11	56	42	23	19	17	22	
"	21	642	11	53	10	23	58	18	01	
October	1	2,434,652.0	11	49	45	00	37	18	40	
,	11	, 662	11	46	50	01	17	19		
,	21	672	11	44	43	01	56	19	59	
Novembe		683	11	43	38	02	40	20		
"	11	693	11	44	04	03	19	21		
D"ember	21	703	11	45	52	03	58	22	01	
December		713	11		00	04	38	22	41	
"	11	723		53	13	05	17			
"	21	2,434,733.0			02		57			

THE SUN, MOON AND PLANETS

The Sun enters the Sign of -
Aries (Equinox March 21 d .0 h.
Cancer (Solstice) June $21 \mathrm{~d} . \quad 19 \mathrm{~h}$.
L.ibra (Equinox) Sept. 23 d .10 h .

Capricorn (Soistice) Dec. 22 d .6 h.
The Earth is at Perihelion on January 2 and at Aphelion on July 5.
There will be five eclipses in 1953, three of the Sun and two of the Moon. Only one, the total eclipse of the Moon of January 29-30, will be visible in South Africa. The circumstances of this eclipse will be as follows:-

There will be a Transit of Mercury over the Sun's disk on November 14.
Only the ingress of the planet will be observable from South Africa. The circumstances are:-

INGRESS
Exterior Contact Interior Contact P. V
Cape of Good Hope $\quad . . \quad 17 \mathrm{~h} \quad 36 \mathrm{~m} .6 \quad 17 \mathrm{~h} \quad 40 \mathrm{~m} .2 \quad 51^{\circ} \quad 291^{\circ}$ Johannesburg $.17 \quad 36.4 \quad 17 \quad 40$. $0 \quad 51^{\circ} \quad 297^{\circ}$ P is the position angle of contact; V the angle from the vertex of the sun.
The least distance of centres has the geocentric value $14^{\prime} 21^{*} .5$
PHASES OF THE MOON

First Quarter	Full Moon	Last Quarter	New Moon
d. h. m.	d. h. m.	d. h. m.	d. h. m.
	Dec. 310705	Jan. 81209	Jan. 151608
Jan. 220743	Jan. 300144	Feb. 70609	Feb. 140310
Feb. 201944	Feb. 282059	Mar. 82026	Mar. 151305
Mar. 221010	Mar. 301455	April 70658	April 132209
April 210240	April 290620	May 61421	May 130706
May 202020	May 281903	June 41935	June 111655
June 191401	June 270529	July 40003	July 110428
July 190647	July 261420	Aug. $\quad 20516$	Aug. 91810
Aug. 172208	Aug. 242221	Aug. 311246	Sept. 80947
Sept. 1611149	Sept. 230615	Sept. 292351	Oct. 811240
Oct. 152344	Oct. 221456	Oct. 291509	Nov. 61958
Nov. 140952	Nov. 21 0112	Nov. 281016	Dec. 61248
Dec. 131830	Dec. 201343	Dec. 280743	

BRIGHT VARIABLE STARS

Name	$\begin{aligned} & \text { Position (1950) } \\ & \text { R.A. Dec. } \end{aligned}$	Range	Period	Expected Maxima 1953
o Ceti (Mira)	02b $17 \mathrm{ml}-03^{\circ} 15^{\prime}$	$3.4-9.2$	331d	Mar. 27
R Doradus	$04 \quad 36-60 \quad 10$	5.8-- 6.6	335	July
R Pictoris	$\begin{array}{llll}04 & 45 & -49 & 20\end{array}$	6.5-10	Irregular	
L. ${ }_{2}$ Puppis	$\begin{array}{lllll}07 & 12 & -44 & 34\end{array}$	$3.1-6.3$	140d (? irr.)	April 19
R Carinae	(0) $31 \begin{array}{llll} & -62 & 34\end{array}$	4.0-10	309	July 18
S Carinae	$\begin{array}{lllll}10 & 08 & -61 & 18\end{array}$	5.4-9.5	149	? April 8
R Hydrac	$\begin{array}{lllll}13 & 27 & -23 & 01\end{array}$	$4.2-9.5$	405	Sept. 24
T Centauri	$\begin{array}{llll}13 & 39 & -33 & 21\end{array}$	6.1-8.0	91	
R Aquarii	$\begin{array}{lllll}23 & 41 & -15 & 34\end{array}$	6.4-10.3	387	April 4

OCCULTATIONS VISIBLE AT CAPE TOWN AND JOHANNESBURG

[^0]
THE PLANETS

The chart shows the S.A.S.T. of the rising and setting of the Sun and Planets at a place whose latitude and longitude are $30^{\circ} \mathrm{S}, 30^{\circ} \mathrm{E}$. The approximate times for other places can be found by applying the longitude differences shown in Table I with the sign reversed, e.g., for Cape Town add 46 minutes to the times given by the chart, for Durban subtract 4 minutes. The correction for latitude will, in general, be sufficiently small to be ignored and in no case will it exceed 15 minutes.

Mercury moves from the morning to the evening sky with great rapidity. The only occasions on which Mercury is likely to be seen are near the times of elongation. In 1953 these are as follows:

Eastern (Evening Star)					Western (Morning Star)			
Date	Elong.		Mag.	Date	Elong.		Mag.	
March 2	\ldots	18	-0.2	April 15	\ldots	27°	+0.6	
June 27	\ldots	\ldots	25	+0.7	August 13	\ldots	19	+0.3
October 23	\ldots	24	+0.1	December 1	\ldots	19	-0.2	

Mercury will be at Superior Conjunction on February 2, May 24 and September 7; at Inferior Conjunction on March 18, July 25 and November 14, and a Transit of Mercury will occur on this last date. It will be at Stationary Points on March 8. March 31, July 10, August 4, November 4 and November 23.

Mercury will be in Conjunction with Venus on April 27 at 23 hours, with Mars on June 2 at 12 hrs.. and with Uranus on June 16 at 9 hrs. On August 23 at 16 hrs. it will be in Conjunction with Mars and only 6^{\prime} South of the latter. On September 29 at 19 hrs. it will be 1.6 degrecs North of Spica and on September 30 at 16 hrs. 2.4 degrees South of Neptune. On October 4 at 3 hrs. Mercury will be in Conjunction with Saturn; on November 23 at 19 hrs. it will be in Conjunction with Venus and only 1.2 degrees North of the latter.

Venus is an evening star during the early part of the year until Inferior Conjunction on April 13. Greatest elongation is reached on January 31 and the planet passes a Stationary Point on March 22. At the beginning of the year the planet has a magnitude of -3.8 and brightens slowly until March 8 after which it begins to fade. During the last eight months of the year Venus is a briliant morning star reaching its greatest elongation on June 22 and its maximum brightness (magnitude -4.2) on May 19. After greatest elongation it moves slowly in towards the Sun, remaining a morning star for the rest of the year, and fading to magnitude -3.4 . It passes a Stationary Point on May 2.

Venus will be in Conjunction with Mars on January 18 and, being only 12^{\prime} North of the latter, will form a striking spectacle. It is close to Aldebaran on July 16 and to Jupiter on July 22. Conjunction with Uranus is on August 22 and the planet is less than half a degree from Regulus on September 23. On October 4 at 8 hrs . Venus will be less than 2^{\prime}
of are from Mars and the pair will present a striking appearance at the beginning of morning twilight. On November 7 it will be only 6 from Neptune and on November 14 less than a degree from Saturn.

Mars does not pass through opposition in 1953 NOR ARE THERE ANY STATIONARY POINTS. It is in Conjanction with the Sun on July 8. The planet is visible after sunset during the first half of the year and before sunrise during the latter half. Its magnitudes during these two periods are about 1.3 and 1.7 respectively. It is close to Jupiter on April 27 and near Regulus on September 13 and Neptune on December 13 The planet is not well placed for observation during this year.

Jupiter moves from the constellation of Arics to Taurus in the course of the year, passing through Stationary Points on January 5 and October 15 and through Opposition on December 13. Jupiter sets soon after 1 a.m. at the beginning of the year and steadily earlier until it sets with the Sun at Conjunction on May 25. Thereafter it is visible before sunrise in the east, and rises steadily earlier until at the beginning of October it rises at midnight and at Sunset early in December. In January it has a magnitude of - 2.2 and grows fainter until in April it has a magnitude of $\mathbf{- 1 . 6}$. Towards Opposition it brightens to -2.3 .

Saturn has Stationary Points on February 6 and Junc 24. It is in Opposition on April 14 and in Conjunction with the Sun on October 23. Saturn remains in Virgo throughout the year. At Opposition its magnitude is +0.5 . The Northern face of the ring system is presented towards the earth, the angle of presentation varying between a minimum of 12" in June and a maximum of more than 18° at the end of December. Saturn is about a degree North of Neptune on May 31 and again on July 11.

Uranus (magnitude 5.8) is in Gemini. It is in Opposition on January 7 and has Stationary Points on March 22 and October 29. Conjunction is on July 11. The most suitable time for observation will be at the beginning of the year, its positions being as follows:-

| | | R.A. | | Dec. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| January 1 | \ldots | 07 h | 12.9 n | $+22^{\prime}$ | 50^{\prime} |
| February 1 | \ldots | 07 | 07.3 | +22 | 59 |
| March 1 | \ldots | 07 | 03.8 | +23 | 05 |

Neptune (magnitude 7.7) is in Virgo. It is at Stationary Points on January 25 and July 3 and in Opposition on April 12. It is in Conjunction with the Sun on October 17. It will be most readily observable in March, April and May. Its positions are:-

			R.A.		Dcc.		
April 1	\ldots	\ldots	13 h	27.1 m	-07°	16^{\prime}	
May	1	\ldots	\ldots	13	24.1	-06	58
June 1	\ldots	\ldots	13	21.6	-06	44	

At the time of Opposition Neptune will be about 4 NNE of Spica and quite near Saturn, with which there is a close Conjunction on May 31 at 13 hrs ., the two being then only 1° apart. A sccond close Conjunction occurs on July II at 02 hrs .

GEOCENTRIC LONGITUDES OF SUN AND BRIGHT PLANETS FOR 1953

			Sun	Mercury	Vonus	Mars	Jupiter	Saturn
Jann.	1	\cdots	280°	262°	325°	331°	41°	$207^{\prime 1}$
Jan.	31	\cdots	311	309	357	354	42	208
Mar.	2	\cdots	341	359	22	16	46	208
April	1	\cdots	011	350	29	38	52	206
May	1	\cdots	040	19	14	60	58	204
May	31	\cdots	069	77	27	80	65	202
June 30	\cdots	098	123	53	101	72	202	
July 30	3	126	118	84	120	78	203	
Aug 24	\cdots	155	147	119	140	83	205	
Sept. 28	\cdots	185	200	155	159	86	208	
Oct. 28	\cdots	214	237	192	178	86	211	
Nov. 27	\cdots	244	226	229	196	84	215	
Dec. 27	\cdots	275	264	267	214	80	218	

METEOR CALENDAR, 1953

Date	Shower	Radiant Long. Lat.	Maximum			Nature of Current
			Date	Rate per hour	$\begin{gathered} \text { Time } \\ \text { of } \\ \text { Transit } \end{gathered}$	
Jan. 3	Quadrantids	$227^{\circ}+46^{\circ}$	Jan. 3	40	08.5	Unknown.
Mar. 12April 25	Hydraids	$184^{\circ}-27^{\circ}$	Mar. 25	?	00.0	Unknown.
$\begin{array}{c\|} \text { Murch } \\ \text { May } \end{array}$	Virginids	2030 ${ }^{\circ} 6^{\circ}$	April 3...	?	00.0	Ecliptical
April 12-24	Lyrids	$273{ }^{\circ}+35^{\circ}$	April 22	12	040	Cometary:
$\begin{aligned} & \text { April } 29 \\ & \text { May } 21 \end{aligned}$	Eita A.juarids	$3388^{\circ}-1^{\circ}$	Mav 5	10	07.6	Cometary: Halley.
April $20-$	Sco-Sgr.	$270^{\circ}-30^{\circ}$	June 14	?	00.5	Ecliptical.
July ${ }^{\text {J }}$ S ${ }^{\text {a }}$	System	$343^{\circ}-17^{\circ}$	Aug. 3	20	02.0	Ecliptical
Aup. 10	Aquarids					
July 20 Aug. 19	Perseids	$43^{\circ}-56^{\circ}$	Aug. 11	50	05.6	Cometary: Comet 1862 11
July 25.	Cygnids	$324^{\circ}+51^{\circ}$	Aug. 16	?	00.0	Unknown
$\xrightarrow{\text { Sup. }} 168$	Piscids	$0^{\circ}+4^{\circ}$	Sept. 12	?	00.0	Ecliptical
Oct. ${ }_{\text {Ofl }} 8$	Orionids*	$94^{\circ}+16^{\circ}$	Oct. 19	20	04.4	Cometary:
						Halley.
Scpl. 24-	Taurids	$58^{\circ}-21^{\circ}$	Nov. 13	6	00.6	Eclipticul.
Nov. 16	Leonids	$151^{\circ}+21^{\circ}$	Nov. 16	6	06.5	Comelarv:
Dec. 5m12	Geminids	$113^{\circ}+30^{\circ}$	Dec. 12	30	02.0	Comet 186k Ecliptical
Dec. 5-.. Jan. 7	Velaids	$149^{\circ}-51^{\circ}$	Dec. 29...	7	03.5	Unknown.

*According to Prentice (Director of the Metsor Section of the H.A.A.), this shower has a probable period of tó years with an exp:itad return during 1951-195s.

Much of the above information is derived from HoTmsister's "Meteorvtrome" (Meterric Sireams) published in 1948. The orbits of the Con:tary Currents are closely related to the orbists of the comets indicated, and those of the Ecliptical Currents to the orbits of certain minor planats.

For the moon during the above neriods see Phases of the Moon on page 00.

ASTRONOMICAL DIARY

JANUARY, 1953

Full Moon 30d, 01h. 44 m . New Moon 15d. 16h. 08m.
Mercury in the eastern morning sky rising just before the Sun; Venus and Mars a prominent pair close rogether in the western evening sky: Saturn and Jupiter almost opposite each other in the sky, the formor rising just after midnight and the latter setting just after 1.0 a.m.
d. h.

Jan. 2 Earth at Perihelion, distance 0.983 astronomical units. Jupiter at a Stationary Point.
", 7 Uranus in Opposition.
", $9 \quad 11$ Saturn in Conjunction with the Moon. Saturn $8^{\circ} \mathrm{N}$.
". $12 \quad 11$ Occultation of Antares.
", 1804 venus $0^{\prime \prime} .2 \mathrm{~N}$. of Mars.
," 1903 Mars in Conjunction with the Moon. Mars $4^{\circ} \mathbf{S}$.
,, 1903 Venus in Conjunction with the Moon. Venus $4^{\circ} \mathbf{S}$.
,. 2304 Jupiter in Conjunction with the Moon, Jupiter 7° S.
, 25 Neptune at a Stationary Point.
, 29-30 Total Eclipse of the Moon.
". 31 Venus at Greatest Elongation $47^{\circ} \mathrm{E}$.

FIBRUCARY, 1953

Full Moon 28d. 20h. 59m.
New Mon 14d. 02h. 10 m .
Mercury is an evening star. Venus and Mars are close together in the western evening sky. Jupiter is somewhat higher in the west at sunset. Saturn rises about 10 p.m.
d. h.

Feb. 2 Mercury at Superior Conjunction.
520 Saturn in Conjunction with the Moon, Saturn 8° N.
6 Saturn at a Stationary Point.
13-14 Partial Eclipse of the Sun, not visible in S. Africa.
171 Mars in Conjunction with the Moon, Mars 5^{c} S.
1711 Venus in Conjunction with the Moon, Venus $2^{\circ} \mathrm{S}$.
1916 Jupiter in Conjunction with the Moon, Jupiter 6° S.
MARCH, 1953
Full Moon 30d. 14h. 55m.
New Moon 15d. 13h. 05m.
Mercury an evening star at the beginning of the month; Venus and Mars close together in the western evening sky with Jupiter only a little higher in the sky; Saturn rising at the end of evening twilight.
d. h.

Mar. 2 Mercury at Greatest Elongation. 18° East.
501 Saturn in Conjunction with the Moon, Saturn 8° N.
8 Mercury at a Stationary Point.
8 Venus at greatest brilliancy.
804 Occultation of Antares.

MARCH, 1953 (continued)

	17	22	Venus in Conjunction with the Moon, Venus $2^{\circ} \mathrm{N}$.
$"$	17	22	Mars in Conjunction with the Moon, Mars $5^{\circ} \mathrm{S}$.
$"$	18	01	Venus in Conjunction with Mars, Venus $7^{\circ} \mathrm{N}$.
\because	18		Mercury at Inferior Conjunction.
$"$	19	08	Jupiter in Conjunction with the Moon, Jupiter $6^{\circ} \mathrm{S}$.
$"$	21	0	Equinox.
$"$	22		Venus at a Stationary Point.
$"$	22		Uranus at Stationary Point.
$"$	31		Mercury at a Stationary Point.

APRIL, 1953
Full Moon 29d. 06h. 20 m .
New Moon 13d. 22h. 09m.
Mercury is a morning star. Venus is a morning star in the second half of the month. Mars and Jupiter set close together immediately after sunset. Saturn rises at sunset.
d. h.

April 1204 Mercury in Conjunction with the Moon, Mercury 6 S.
13 Venus at Inferior Conjunction.
, 14 Saturn at Opposition.
" 15 Mercury at Greatest Elongation. $27^{\circ} \mathrm{W}$.
," $15 \quad 18$ Mars in Conjunction with Moon, Mars 5° S.
", 1604 Jupiter in Conjunction with the Moon, Jupiter $6^{\prime \prime} \mathrm{S}$.
.. 2718 Mars in Conjunction with Jupiter, Mars 1".I N.
.. 2723 Mercury in Conjunction with Venus, Mercury 7". 2 S .
, 2806 Saturn in Conjunction with the Moon, Saturn $8^{\circ} \mathbf{N}$.
MAY, 1953
Full Moon 28d. 19h. 03m. New Moon 13d. 07h. 06m.
Mercury a morning star; Venus very prominent before dawn; Saturn visible most of the night and setting an hour before morning twilight.
d. h.

May	2		Venus
	10	21	Venus in Conjunction with the Moon, Ven
	14	13	Mars in Conjunction with the Moon, Mars 4^{4}
"	15	19	Neptune in Conjunction with Spica, Neptune $4^{2} .1 \mathrm{~N}$.
$\stackrel{ }{+}$	15	20	Mars in Conjunction with Aldebaran, Mars $6^{\circ} .1 \mathrm{~N}$.
,	19		Venus at greatest britliancy.
,	24	13	Saturn at Conjunction with Spica, Saturn $5^{\circ} .1 \mathrm{~N}$.
	24		Mercury at Superior Conjunction.
	25	11	Saturn in Conjunction with the Mo
	31	13	Saturn in Conjunction with Neptune. Saturn $1^{\circ} \mathrm{N}$

JUNE, 1953
Full Moon 27d. 05h. 29m.
New Moon 11d. 16h. 55m.
Mercury an evening star; Venus a very prominent morning star. Saturn sets in the small hours. Jupiter in the east rising just before the Sun.

June	${ }_{2}$	${ }_{12}^{\mathrm{h}}$	Mercury
"	8	10	Venus in Conjunction with the Moon, Venus $8^{\circ} \mathrm{S}$.
"	13	09	Mercury in Conjunction with the Moon, Mercury 0.1 N .
	16	09	Mercury in Conjunction with Uranus, Mercury $1^{\circ} .4 \mathrm{~N}$.
"	20	23	Mercury in Conjunction with Pollux, Mercury $5^{\prime \prime} 4 \mathrm{~S}$.
,"	21	02	Jupiter in Conjunction with Aldeburan, Jupiter $4^{\circ} .9 \mathrm{~N}$,
,	21	18	Saturn in Conjunction with the Moon, Saturn 8" N .
-	21	19	Solstice.
	22		Venus at Greatest Elongation West.
,	24		Saturn at a Stationary Point.
	27		Mcrcury at Greatest Elongation, $25^{\circ} \mathrm{E}$.

JULY, 1953
Full Moon 26d. 14h. 20 m .
New Moon 11d. 04h. 28m.
Mercury an evening star for the first half of the month. Venus a prominent morning star. Jupiter rises three hours before dawn. Saturn sct. at midnight.

July	3		cptune at a Stationary
,"	5		Earth at Aphelion, distance 1.017 astronomical units.
"	7	15	Venus in Conjunction with the Moon, Venus $8^{\circ} \mathrm{S}$.
"	8		Mars in Conjunction with the Sun.
"	8	13	Jupiter in Conjunction with the Moon, Jupiter $5^{\circ} \mathrm{S}$.
"	10		Mercury at a Stationary Point.
-	11		Partial eclipse of the Sun, not visible in S. Africa.
"	11	02	Saturn in Conjunction with Neptunc, Saturn 0.9 N.
"	12	17	Mercury in Conjunction with the Moon, Mercury $3^{\circ} \mathrm{S}$.
"	16	13	Venus in Conjunction with Aldebaran Veaus $2^{\circ} .8 \mathrm{~N}$.
-	19	03	Saturn in Conjunction with the Moon, Saturn $8^{\circ} \mathrm{N}$.
"	23	00	Venus in Conjunction with Jupiter, Venu; $1^{\circ} .9 \mathrm{~S}$.
"	25		Mercury at Inferior Conjunction.
-	25	23	Saturn in Conjunction with Spica, Saturn $4^{\text {a }} .8 \mathrm{~N}$.
"	26		Total eclipse of the Moon not visible in S. Africa.

AUGUST, 1953
Full Moon 24d. 22h. 21 m .
New Moon 9d. 18h. 10 m .
Mercury and Venus morning stars; Mars rising in morning twilight. Jupiter rising in the small hours. Saturn visible in the west in the evening.
d. h.

Aug. 4
505
604
804
9
13 Mercury at Greatest Elongation, $19^{\circ} \mathrm{W}$.
$15 \quad 13$ Saturn in Conjunction with the Moon, Saturn 8° N.

AUGUST, 1953 (continued)

| | 19 | 20 | Neptune in Conjunction with Spica, Neptune $4^{\circ} .0 \mathrm{~N}$. |
| :--- | :--- | :--- | :--- | :--- |
| $"$ | 22 | 19 | Venus in Conjunction with Uranus, Venus $1^{\circ} .3 \mathrm{~S}$. |
| $"$ | 23 | 16 | Mercury in Conjunction with Mars, Mercury $0^{0} .1 \mathrm{~S}$. |
| $"$ | 24 | 22 | Venus in Conjunction with Pollux, Venus $7^{\circ} .5 \mathrm{~S}$. |
| SEPTEMBER, 1953 | | | |

Full Moon 23d. 06h. 15m. New Moon 8d. 09h. 47m.
Mercury very close to the Sun as an evening star. Venus and Mars morning stars rising in the twilight. Jupiter rising soon after midnight. Saturn in the West setting just after dark.
d. h.

Sept. 18 Jupiter in Conjunction with the Moon, Jupiter $4^{\circ} \mathrm{S}$.
505 Venus in Conjunction with the Moon, Venus $0^{\circ} .3 \mathrm{~N}$. Mars in Conjunction with the Moon, Mars $3^{\circ} \mathrm{N}$. Mercury at Superior Conjunction.
$\because \quad 70$
Saturn in Conjunction with the Moon, Saturn $8^{\circ} \mathrm{N}$.
1303 Mars in Conjunction with Regelus, Mars $0^{\circ} .8 \mathrm{~N}$.
2310 Equinox.
2311 Venus in Conjunction with Regulus, Venus 0". 4 N .
2905
,, 2919 Mercury in Conjunction with Spica, Mercury $1^{\circ} .6 \mathrm{~N}$.
", 3016 Mercury in Conjunction with Neptune, Mercury $2^{\circ} .4 \mathrm{~S}$. Jupiter in Conjunction with the Moon, Jupiter $4^{\circ} \mathrm{S}$.

OCTOBER, 1953

Full Moon 22d. 14h. 56m.
New Moon 8d. 02h. 40m.
Mercury and Saturn evening stars close together in the evening twilight at the beginning of the month. Venus a morning star rising in the morning twilight. Mars rises somewhat earlier than Venus. Jupiter visible after midnight.
d. h.

Oct. 403
408
$\because \quad 5 \quad 15$
, 517
" $10 \quad 03$
," 1012
" 15
5

Noptune in Cojuncion with
23 Neptune in Conjunction with the Sun.
23 Mercury at Greatest Elongation, $24^{\circ} \mathrm{E}$.
23 Saturn in Conjunction with the Sun.
2614 Jupiter in Conjunction with the Moon, Jupiter $3^{\circ} \mathbf{S}$.
29 Uranus at a Stationary Point.
NOVEMBER, 1953
Full Moon 21d. 01h. 12m.
New Moon 6d. 19h. 58m.
Mercury an evening star at the beginning of the month. Mercury at the end of the month, Venus and Saturn rising in morning twilight with

NOVEMBER, 1953 (continued)
Mars rising an hour before first light. Jupiter rises in the evening and is visible for the rest of the night.

> d. h.

Nov. 311 Mars in Conjunction with the Moon, Mars $6^{\circ} \mathrm{N}$.

4
$\because 505$
", 506
$7 \quad 09$
$8 \quad 03$
14
1406
2221 Jupiter in Conjunction with the Moon, Jupiter $3^{\circ} \mathbf{S}$.
23 Mercury at a Stationary Point.
2319 Mercury in Conjunction with Venus, Mercury $1^{\circ} .2 \mathrm{~N}$.
DECEMBER, 1953
Full Moon 20d. 13h. 43m. New Moon 6d. 12h. 48m.
Mercury and Venus very close to the Sun in the morning twilight. Mars and Saturn rising in the East close together in the morning. Jupiter rises at sunset and is visible throughout the night.
d. h.

Dec. i Mercury at Greatest Elongation. $19^{\circ} \mathrm{W}$.
206
$\begin{array}{ll}3 & 14\end{array}$
$" 423$
$\begin{array}{lll}" & 5 & 12 \\ ", & 12\end{array}$
$\because \quad 704$
., 1209
, 13
", 1310
", 16 11
.. $20 \quad 01$

- 2206
, 3101
, 3104

Mars in Conjunction with the Moon, Mars $7^{\circ} \mathrm{N}$.
Saturn in Conjunction with the Moon, Saturn $8^{\circ} \mathrm{N}$.
Mercury in Conjunction with the Moon, Mercury $7^{\circ} \mathrm{N}$.
Venus in Conjunction with the Moon, Venus $5^{\circ} \mathrm{N}$.
Mars in Conjunction with Spica, Mars $3^{\circ} .5 \mathrm{~N}$.
Venus in Conjunction with Antares, Venus $5^{\circ} .2 \mathrm{~N}$. Jupiter in Opposition.
Mars in Conjunction with Neptune, Mars $0^{\circ} .5 \mathrm{~S}$.
Mercury in Conjunction with Antares, Mercury $5^{\circ} .4 \mathrm{~N}$. Jupiter in Conjunction with the Moon, Jupiter $3^{\circ} \mathbf{S}$.
Solstice.
Mars in Conjunction with the Moon, Mars $7^{\circ} \mathrm{N}$.
Saturn in Conjunction with the Moon, Saturn $8^{-} \mathrm{N}$.

TRANSITS OF MERCURY AND VENUS

A feature which distinguishes the year 1953 astronomically is the -fact that a transit of Mercury, partly visible from South Africa, will occur on November 14. Transit of Mercury are relatively rare, and those of Venus, exceedingly rare. In the past Transits of Venus have been regarded as of high astronomical importance, for they offered a means, now superseded by more accurate methods, for the determination of the distance of the Earth from the Sun. Transits of Mercury were never of great value in this connection and are now chicfly of interest in that they offer an opportunity for the exact measurement of the angular diameter of the planct, and may yield results of interest in connection with any traces of atmosphere that Mercury may possess. On a larger view, the occurrence of the phenomena at the times and under the circumstances predicted form a general verification, if that is still needed, of the accuracy of modern planctary theory and an opportunity to determine small corrections of position. However, although one may at the moment deprecate somewhat the astronomical importance of the phenomenon, there is no telling that, perhaps in the near future, the unusual circumstances presented, will not be realised as an opportunity for undertaking observations of a novel type.

Were the orbits of all the planets in exactly the same plane a hypothetical observer situated on any one of the planets would see each planet interior to his own pass in front of the Sun's disc at intervals cqual to the synodic period of each pair of planets concerned. If these circumstances obtained there would be a Transit of Mercury every 116 days and a Transit of Venus cvery 584 days. Observers on Mars, Jupiter and Saturn would sce Transits of the Earth at intervals of 780,399 and 378 days respectively, and Neptunian and Plutonian observers would reckon Earth Transits as an annual (every terrestrial year) event.

The rarity of Transits arises from a cause similar to that which makes eclipses rare, namely, that the orbits concerned are not all in the same plane. The planes of any two orbits are inclined to one another and intersect in a line. In the case of the orbit of the Farth and the orbit of any other planet this line defines the two opposite directions from the Earth to the apparent intersections (the Nodes) of the two orbits on the Celestial Sphere. We may envisage the problem in locomotive terms, where each orbit represents a railway or a road. Transits and eclipses are then analogous to collisions, which require not only an intersection of the two tracks, but also the simultancous presence close to the intersection of the entities-irains, cars, or planets-which run along these tracks.

The case of transits is somewhat simpler than that of eclipses, for the planets concerned may be regarded as practically points, and the problem of predicting a transit is to discover whether or not these points will pass before the solar disc. In eclipse problems there are concerned always two discs of finite size-those of the Sun, Moon, or shadow of the Earth as the case may be. The two cases are however similar in this respect, that on either side of each of the nodes of the orbits of Mercury and of

Venus there is a certain angular range, such that, if Inferior Conjunction of the planet and the Sun occurs within this angular range, there will be a transit at that node. These Transit Limits are analogous to the Eeliptic Limits in the case of eclipses: then an eclipse can be predicted if Full or New Moon occurs within a certain angular range of the nodes of the Moon's orbit.

The orbit of Mercury is inclined at 7 degrees to the Ecliptic, and the Sun passes through the nodes of the orbit on May 7 and November 9 each year. The estimation of the transit limits is complicated by a number of factors, and especially by the fact that the orbit of Mercury is markedly elliptical. The distance of Mercury from the Sun varies from about 0.31 astronomical units at perihelion, to about 0.47 astronomical units at aphelion. The positions of the nodes on the orbit are fairly close to the positions of perihelion and aphelion, the latecr being close to the direction of the node through which the Sun passes in May. When conditions are favourable for a transit the Sun is near one of the nodes and Mercury in its orbit is near the same node. Thus, if a transit is to take place in May of a certain year, the Sun, Mercury and the Earth will all be closely in line, and Mercury will be almost as close as it can be to the Earth, about 0.5 astronomical units. If a transit is to take place in Novernber of a certain year, the Sun, Mercury and the Earth will again be almost exactly in line, and Mercury will be at the greatest possible distance from the Larth which can occur at Inferior Conjunction, about 0.7 astronomical units. Imagine a cone with vertex at the Earth, drawn with the solar dise as base, constructed for May 7 and November 9 in any year. Since these are the times of passage of the Sun through the nodes of the orbit of Mercury, the orbit of the planet will slice through these cones, and if the planet happens to be on the parts of its orbit so defined, there will be a transit. But from what has gone before, it will be clear that for the conditions which obtain in May, the orbit of Mercury slices through the cone relatively near the Earth, its vertex, so that only a short length of Mercury's orbit is favourable for the occurrence of a transit. In November, the orbit being nearer the Sun, the path of Mercury goes through the cone nearer its base, and a greater length of the orbit is favourable for the occurrence of a transit.

Matters are still further complicated by the fact that, of course, the rate of travel of Mercury in its orbit is different when the planet is near aphelion from what it is at perihelion. Considered from a terrestrial viewpoint, the whole matter can be summed up in the statement that for May transits, the limit is that Inferior Conjunction with the Sun must occur within $2^{\circ} 40^{\prime}$ on either side of the node. whereas for November transits, the limit is $4^{\circ} 45^{\prime}$ on either side of the node. This means that November transits are about twice as common as May transits. Since the Sun moves about a degree per day, it means that November transits can occur up to about five days on either side of nodal passage, that is, as carly as November 4 or as late as November 14, while the May transits must always be within two or three days on either side of the seventh, that is, the earliest date is approximately May 5 and the latest about May 9.

The synodic period of Mercury is 115.88 days, after which, relative positions of the Sun, Mercury and Larth repeat themselves, so far as a "plan view" of the solar system is concerned. If we want to consider the recurrence of transits, we must not only make the relative positions of the three bodies correct, but must consider too the positions relative to the nodes of Mercury's orbit. If a transit occurred on a certain day, then, 116 days later, there would be another Inferior Conjunction, but it would not take place near a node of the orbit, and there would be no transit. Twenty-two synodic periods of Mercury are 7.4 days short of seven years, and during 7.4 days the Sun will move roughly an equal number of degrees. This is a little less than twice $4^{\circ} 45^{\prime}$, so that if a November transit occurs with Inferior Conjunction at one end of the range of Transit Limits for November, there can be another November transit seven years later. The approximation of 22 synodic periods to seven years is, however, not close enough for a repetition of a May transit ot occur after seven years. Forty-one synodic periods differ from 13 years by only 2.8 days, so that a repctition of a November transit after 13 ycars is very probable, and of a May transit, a possibility. Finally, 145 synodic periods differ from 46 years by only 1.1 days, so that a repetition of a transit at the same node after 46 years is almost certain. The dates of the transits of Mercury in the twentieth century, listed below, illustrate well the facts explained above:-

1907, November 12
1914, November 6 1924, May 7
1927, November 8
1940, November 12
1953, November 14
1960, November 6
1957, May 5
1973. November 9

1986, November 12
1999, November 14
On 1937, May 11, thirteen years after the first May transit listed above. Mercury approached so close to the Sun that the late Dr. Bernard Lyot was able to photograph it as a black dot superposed on the corona.

Transits of Venus are much rarer events than transits of Mercury. The inclination of the orbit is only $3^{\circ} 24^{\prime}$ and the Transit Limit is only $1^{\circ} 45^{\prime}$ on either side of the node so that transits if they occur must do so within a day or so on either side of the dates of nodal passage which are on June 7 and December 8. Since the orbit of Venus is the least eccentric of all the planets, there is not the same variation from one node to another that there is in the case of Mercury. By arguments similar to those used in the case of Mercury it can be shown that if a transit occurs at a given node another one may occur at the same node eight years later. This recurrence is not certain: it only occurs if the track of the first transit is more than 12^{\prime} from the centre of the solar disc. If it does happen no further transit at the same node is possible for 235 years or 243 years although there will be a transit at the other node after about half this time.

December transits of Venus occurred in 1631, 1639, 1874 and 1882 and the next pair will occur in 2117 and 2125 . The dates of June transits are

1761, 1769, 2004 and 2012. The importance of transits in the past was that, by timing the interval required for the planet to cross the disc (it is about eight hours for a central transit) as seen from points on the Earth separated by a large difference in latitude, it was possible to estimate the distance of the Earth from the Sun. The two timings enabled the angular displacement of the path of the planet to be determined, and then the knowledge of the relative dimensions of the orbits of the Earth and Venus, plus a knowledge of the separation between the observing stations in miles, led to the desired distance. Unfortunately there is an optical effect which smudges out the black disc of the planet as it enters the border of the solar disc, making the determination of the exact instant of contact difficult. In addition the angular diameter of the solar disc is used as an intermediate datum and this is not a quantity readily determinable with the highest precision. In consequence, although the transits of 1769, 1874 and 1882 were observed extensively, the results for the solar parallax were not very accurate, and this method is now outmoded. A transit of Mercury is not suitable for this purpose because the distance of the planet from the Earth at the time of transit is too large for the effect of changing the observer's latitude to be of a size sufficient for it to be measured with the necessary precision.

Nevertheless exact timings by South African obscrvers (taking the very necessary precautions against damage to eyesight by concentrated sunlight) of the moments of contact of Mercury and the solar disc, and especially of the moment when the dise of the planet is just fully seen against the sun (second contact) will be of value in establishing corrections to orbital data for Mercury.

At the Rome mecting of the International Astronomical Union in September the following Resolution was passed by the Commissions on Ephemerides and on Celestical Mechanics:
"Commissions 4 and 7 recommend all observatories to take part as far as possible in precise observations of the Transit of Mercury which will take place in November, 1953."

SPECIAL ARTICLES IN PREVIOLS HANDBOOKS

1949, page 11 Celestial Objects of Interest to the Owners of Small Telcscopes.
1949, page 16
1950, page 13
1950, page 15
1950, page 17
1951, page 12
1951, page 74
1951, page 16
1952, page 18
Principal Elements of the Solar System.
Jupiter's Satellites.
Saturn's Satellites,
Eclipses.
The Constellations.
The Stars in Summer, Autumn, Winter and Spring.
The South African Observatories.
The Calendar.

OBSERVING SECTIONS

A number of observing sections has been formed to encourage amateurs to undertake useful research. Enquiries about these observing sections should be addressed to the Directors whose names and addresses are given below:-

Variable Stars
Mr. R. P. de Kock, The Royal Observatory, Observatory, Cape
Meteor Section
Mr. S. C. Venter, P.O. Box 1416, Pretoria, Transvaal
Computing Section
Mr. W. P. Hirst, "Water’s Edge," Greenbanks Road, Rondebosch, Cape.

CAPE CENTRE

Chairman: Dr. David S. Evans.
Vice-Chairman:
Secretary:
Treasurer:
Hon. Auditor:
Committee:
Mr. C. A. Wahl.
Mr. R. B. Borcherds.
Mr. H. E. Krumm
Mr. A. Menzies.
Mr. A. W. J. Cousins, Mr. E. H. Tibbitts, Mr. B. Chiat, Mr. H. O. Painczyk, Mr. R. J. Johnston.
Meetings are normally held at the Royal Observatory at 8 p.m. on the second Wednesday of each month except in January and December. All communications should be addressed to the Hon. Secretary, the Cape Centre, c/o The Royal Observatory, Observatory, C.P.

TRANSVAAL CENTRE

Chairman: Mr. P. Seligman.
Vice-Chairman:
Dr. T. Ackerman
Hon. Secretary and Treasurer: Mr. P. Smits.
Committee: Dr. A. E. H. Bleksley, Dr. P. Kirchhoff, Mr. H. C. Lagerweij, Dr. A. D. Thackeray.
All communications should be addressed to the Hon. Secretary, 21 Strathbogie, 8, Caroline Street, Hillbrow, Johannesburg.

PORT ELIZABETH CENTRE

For details apply to Mr. J. C. Bentley, P.O. Box 225, Port Elizabeth.

NATAL CENTRE

For details apply to Mr. A. H. Finnis, 913, Killarney, Brickhill Road, Durban.

[^0]: Note.-N.Z.C. 2366 is Antares.

