# ASTRONOMICAL YEARBOOK FOR SOUTH AFRICA 



CLIPILEO BI MARY FITGGERALD AIJ ROBERT OLCKEPS. JOHASESEURG PLHIETARISI

Altheush every precaution has been taken to ensure that the fioures and information contained within this booklel are correct, the Planetarium does not accept responsibility for any ertors therein.

The data in this booklet has been extracted from the Astronomical Almanac for the vear 1986. nublished be Her Masesty's Gtationery Qffice, and adioted for South Africa.

## ASTRONOMICAL YEARBOOK FOR SOUTH AFRICA 1986

TABLE OF CONTENTS
Diary of Astronomical Events ..... 2
THE SUN ..... 9
Solar Eclipses ..... 9
Sunrise and Sunset times ..... 10
l'imes of Sun's transit over 30 deg. meridian ..... 12
THE MOON ..... 14
Phases of the Moon ..... 15
Map of the Moon ..... 16
The Moon's Orbit ..... 18
Lunar eclipses ..... 18
Moonrise and Moonset times ..... 19
THE PLANETS ..... 31
Mercury ..... 31
Venus ..... 32
Earth ..... 33
Mars ..... 33
Jupiter ..... 34
Saturn ..... 39
Uranus ..... 40
Neptune ..... 42
Pluto ..... 42
COMETS ..... 44
Predicted perihelion passages of comets, 1986 ..... 44
Comet Halley ..... 44
THE STARS ..... 48
Summer consteliations ..... 48
Autumn constellations ..... 54
Winter constellations ..... 56
Spring Constellations ..... 58
Characteristics of stars ..... 63

ASTROHOMICAL EVENTS FOR 1986.
The events listed below are presented in chronological order of their occurrence to the nearest hour of South African Standard Tine.
(Some of the appulses given below occur during daylight, or when the bodies are belou the horizon. But the objects will still be sufficiently close in the dark for the phenonena to be of interest to observers.)

COHFIGURATION OF THE SUN, MOON AND PLANETS.

$$
\begin{aligned}
& \text { d } h \\
& \text { Jan. } 207 \text { Earth at perihelion } \\
& 322 \text { LAST QLARTER } \\
& 603 \text { Mars } 1.7 \text { degrees } N \text {. of Moon } \\
& 716 \text { Saturn } 4 \text { degrees } N \text {. of Moon } \\
& 809 \text { Moon at perigee } \\
& 812 \text { Mercury } 1.7 \text { degrees 5. of Neptune } \\
& 1014 \text { NEW MOON } \\
& 1216 \text { Jupiter } 4 \text { degrees N. of Moon } \\
& 1800 \text { FIRST QUARTER } \\
& 1914 \text { Venus in superior conjunction } \\
& 2003 \text { Moon at apogee } \\
& 2603 \text { FULL MOON } \\
& \text { Feb. } 103 \text { Mercury in superior conjunction } \\
& 207 \text { LAST QUARTER } \\
& 314 \text { Mars } 3 \text { degrees } \mathrm{N} \text {. of Moon } \\
& 403 \text { Saturn } 5 \text { degrees N. of Moon } \\
& 418 \text { Moon at perigee } \\
& 500 \text { Uranus } 4 \text { degrees } N \text {. of Moon } \\
& 522 \text { Neptune } 5 \text { degrees } N \text {. of Moon } \\
& 903 \text { NEW MOON } \\
& 1005 \text { Saturn } 7 \text { degrees } N \text {. of Antare } 5 \\
& 1622 \text { FIRST QLARTER } \\
& 17 \text { OO Moon at apogee } \\
& 17 \text { 08 Mars } 5 \text { degrees N. of Antares } \\
& 1802 \text { Mars } 1.3 \text { degrees S. of Saturn }
\end{aligned}
$$

1812 Jupiter in conjunction with Sun
$24 \quad 17$ FULL MOON
2818 Mercury greatesf elong. E. (18 degrees)
Mar. I 12 Moon at perigee
310 Saturn 5 degrees N. of Moon
314 LAST QUARTER
322 Kars 4 degrees $N$. of Moon
407 Uranus 4 degrees N. of Moon
505 Neptune $\delta$ degrees N . of Moon
701 Mercury stationary
815 Mercury 5 degrees N. of Venus
1017 NEU MOON
1117 Venus 1.3 degrees N. of Moon
1311 Mars 0.3 degrees N. of Uranus
1621 Moon at apogee
1622 Mercury in inferior conjunction
1819 FIRST QLARTER
2100 Equinox
2605 FULL MOON
28 16 Moon at perigee
3015 Antares 1.2 degrees S. of Moon
3017 Saturn 5 degrees N. of Moon
3113 Uranus 4 degrees N. of Moon
Apr. 105 Mars 5 degrees N. of Koon121 LAST QLARTER
604 Jupiter 3 degrees $N$. of Moon
623 Mercury 2 degrees N. of Moon
824 Mars 1.4 degrees 5. of Neptune
9 OB NEU MOON
1104 Venus 1.3 degrees S. of Moon
1314 Moon at apogee
$13 \quad 17$ Mercury greatest elong. W. (28 degrees)
$17 \quad 13$ FIRST QUARTER
$24 \quad 15$ FULL MOON
2520 Moon at perigee
$26 \quad 15$ Pluto at opposition
2623 Saturn 5 degrees $N$. of Moon
2623 Antares 1.1 degrees N. of Moon
2700 Saturn 7 degrees $N$. of Antares
2720 Uranus 4 degrees $N$. of Moon
2818 Neptune 6 degrees N. of Moon
2908 Mars 4 degrees N. of Moon
May 105 LAST QUARTER
320 Jupiter 3 degrees $N$. of Moon
513 Venus 6 degrees $N$. of Aldebaran
713 Mercury 2 degrees S. of Moon
900 NEU MOON
1101 Moon at apogee
1113 Venus 3 degrees S. of Moon
1703 FIRST QJARTER
2303 Mercury in superior conjunction
2323 FULL MOON
2405 Moon at perigee
2407 Saturn 5 degreps N. of Moon
2410 Antares 1.2 degrees S. of Moon
2505 Uranus 4 degrees N. of Moon
2602 Neptune 6 degrees N. of Moon
2705 Mars 3 degrees N. of Moon
2803 Saturn at opposition
$30 \quad 15$ LAST QUARTER
3110 Jupiter 2 degrees $N$. of Moon
Jun. 704 Moon at apogee
716 NEW MOON
908 Mercury 3 degrees S. of Moon
10 16 Venus 5 dearees 5. of Pollux
1018 Venus 3 degrees S. of Moon
1117 Uranus at opposition
1514 FIRST QUARTER
2015 Saturn 5 degrees N. of Moon
2021 Antares 1.1 degrees S. of Moon
2101 Mercury 6 degrees S. of Pollux
2114 Uranus 4 degrees N. of Moon
2115 Moon at perigee
$21 \quad 18$ ..... Solstice
2206 FULL MOON
2212 Neptune d degrees N. of Moon
2315 Mars 0.5 degrees N. of Moon
2522 Mercury greatest elong. E. (25 degrees)
2610 Neptune at opposition
2722 Jupiter 1.9 degrees N. of Moon
2903 LAST QUARTER
Jul. a 10 Moon at apogee
512 Earth at aphelion
707 NEW MOON
822 Mercury 8 degrees S. of Moon
1007 Mars at opposition
1019 Venus 3 degrees S. of Moon
II 01 Venus 1.1 degrees N . of Regulus
1422 FIRST QUARTER
1613 Mars closest approach
1722 Saturn 5 degrees N. of Moon
1806 Antares 1 degree S. of Moon
1822 Uranus 4 degrees N . of Moon
1921 Neptune 6 degrees N. of Moon
1922 Moon at perigee
2015 Mars 0.9 degrees S. of Moon
2113 FULL MOON
2313 Mercury in inferior conjunction
2508 Jupiter 1.5 degrees $N_{1}$ of Moon
2818 LAST QUARTER
3123 Moon at apogee
Aug. 408 Mercury 8 degrees S. of Moon521 NEW MOON
913 Venus 2 degrees S. of Moon
1118 Mercury greatest elong. W. (19 degrees)
1304 FIRST QUARTER
1404 Saturn 5 degrees N. of Moon
1413 Antares 0.8 degrees S. of Moon
1505 Uranus 4 degrees N. of Moon

1605 Neptune 6 degrees N. of Moon
16 18 Mars 0.5 degrees S. of Moon
$16 \quad 19$ Moon at perigee
1921 FULL MOON
2113 Jupiter 1.4 degrees N. of Moon
2711 LAST QUARTER
27 11 Venus greatest elong. E. (46 degrees)
$28 \quad 17$ Moon at apogee
3117 Venus 0.5 degrees $S$. of Spica
Sep. 409 NEW MOON
520 Mercury in superior conjunction
722 Venus 3 degrees 5 . of Moon
1011 Saturn 5 degrees $N$. of Moon
1019 Antares 0.7 degrees 5 . of Moon
1023 Jupiter at opposition
1110 FIRST OLARTER
11 II Uranus 4 degrees N . of Moon
1202 Moon at perigee
!? 10 Neptune $\delta$ degrees N. of Moon
1312 Mars 0.9 degrees N. of Moon
1716 Jupiter 1.6 degrees N. of Moon
1808 FULL MOON
2310 Equinox
2512 Moon at apogee
2605 LAST QUARTER
2910 Mercury 1.5 degrees N. of Spica
Oct. 112 Venus greatest brilliancy
321 NEW MOON
509 Mercury 0.4 degrees S. of Moon
612 Venus 4 degrees $S$. of Moon
712 Moon at perigee
720 Saturn 5 degrees N. of Moon
801 Antares 0.6 degrees S. of Moon
817 Uranus 4 degrees N. of Moon
9 16 Neptune 6 degrees N. of Moori
$10 \quad 15$ FIRST QUARTER
1115 Mars 2 degrees N. of Moon
1418 Jupiter 1.9 degrees N. of Moon
1721 FULL MOON
1816 Mercury 4 degrees N. of Venus
2200 Mercury greatest elong. E. (24 degrees)
2308 Moon at apoget
2600 LAST QUARTER
3103 Pluto in conjunction with Sun
Nov. 208 NEU MOON
316 Saturn 6 degrees $N$. of Antares
316 Mercury 0.8 degrees N. of Moon
404 Moon at perigee
409 Saturn 6 degrees N. of Moon
409 Antares 0.6 degrees S. of Moon
503 Uranus 4 degrees $N$. of Moon
512 Venus in inferior conjunction
600 Neplune $\delta$ degrees $N$. of Moon
823 FIRST QUARTER
902 Mars 3 degrees N. of Moon
10 2] Jupiter 2 degrees N. of Moon
1306 Mercury in inferior conjunctiontransit over Sun
-16 14 FULL MOON
2000 Moon at apogee
2419 LAST QUARTER
2913 Venus 2 degrees N. of Moon
3005 Mercury greatest elong. W. (20 degrees)
30 11 Mercury 5 degrees N. of Moon
Dec. 119 NEW MOON
119 Antares 0.6 degrees S. of Moon
213 Moon at perigee
310 Neptune 6 degrees $N$. of Moon
4 IB Saturn in conjunction with Sun
718 Mars 3 degrees $N$. of Moon

| 8 | 06 | Jupiter 1.8 degrees $N$. of Moon |
| :---: | :---: | :---: |
| 8 | 10 | FIRST QUARTER |
| 11 | 22 | Venus greatest brilliancy |
| 14 | 23 | Uranus in conjunction with Sun |
| 16 | 03 | Mercury 5 degrees N. of Antares |
| 16 | 09 | FULL MOW |
| 17 | 07 | Moon at apogee |
| 19 | 09 | Mars 0.5 degrees N. of Jupiter |
| 19 | 17 | Mercury 1.3 degrees S. of Saturn |
| 22 | 06 | Solstice |
| 24 | 11 | LAST QLARTER |
| 25 | 16 | Mercury 0.4 degrees S. of Uranus |
| 27 | 16 | Neptune in conjunction with Sun |
| 28 | 03 | Venus 7 degrees N. of Moon |
| 29 | 07 | Antares 0.6 degrees S. of Moon |
| 29 | 17 | Saturn 6 degrees N. of Moon |
| 31 | 01 | Moon at perigee |
| 31 | 05 | NEW MOON |

## THE SUN

Basic Solar Data :-

| Average Earth-Sun Distance | $: 149598000 \mathrm{kn}$ (= 1 Astrononical Unit) |
| :--- | :--- |
| Maxinun Sun-Earth Distance | $: 152000000 \mathrm{kn}$ |
| Radius | $: 696000 \mathrm{~km}$ |
| Rotation | $: 25.38$ days |
| Surface Temperature | $: 5800$ degrees K. |
| Spectral Type | $: 62$ |
| Apparent Magnitude | -26.8 |
| Distance to centre of Galaxy | $: 30,000$ Light Years |
| Light-travel time fron Sun |  |
| to Earth | 8.3 ninutes |

SOLAR ECLIPSES DURING 1986
There are two Eclipses of the Sun during 1986: A Partial eclipse on April 9th and an Annular-Total on October 3rd. Both Sun Eelipses will not be visible fron South Africa.

The Partial Eclipse on April 9th is visible fron the Antarctic, South Pacific Ocean and Australia.

The Annular-Total on October 3rd is visible from North Anerica, parts of South Anerica and North Allantic Ocean.

Although both eclipses of the Sun are not visible fron South Africa, the following times are supplied for those interested :-

| 9 April | Partial Eclipse |  |  |
| :--- | :--- | :--- | :--- |
|  | Eclipse begins | 06h 09 | (SAST) |
|  | Eclipse ends | 10h 31 |  |

## SLURISE AND SLISET TJMES FOR JOHFANESBURG, DURBAN, BLOEMFONTEIN AND CAPE TONN

|  | Johannesburg |  | Durban |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Sunrise | Sunset | Sunrise | Sunset |
| Date | n | $h$ n |  | $h$ n |
| Jan 1 | 0518 | 1904 | 0458 | 1901 |
| 11 | 0525 | 1905 | 0506 | 1902 |
| 21 | 0533 | 1904 | 0514 | 1900 |
| Feb 1 | 0542 | 1900 | 0524 | 1855 |
| 11 | 0549 | 1855 | 0532 | 1848 |
| 21 | 0554 | 1847 | 0541 | 1839 |
| Mar 1 | 0600 | 1839 | 0546 | 1830 |
| 11 | 0604 | 1829 | 0553 | 1819 |
| 21 | 0611 | 1819 | 0559 | 1806 |
| Apr 1 | 0617 | 1806 | 0606 | 1753 |
| 11 | 0621 | 1756 | 0611 | 1743 |
| 21 | 0625 | 1747 | 0617 | 1731 |
| May 1 | 0631 | 1738 | 0624 | 1722 |
| 11 | 0637 | 1731 | 0631 | 1714 |
| 21 | 0641 | 1726 | 0636 | 1706 |
| Jun 1 | 0647 | 1723 | 1643 | 1704 |
| 11 | 0652 | 1722 | 0648 | 1703 |
| 21 | 0655 | 1724 | 0651 | 1704 |
| Jul 1 | 0657 | 1727 | 0653 | 1707 |
| 11 | 0655 | 1730 | 0651 | 1711 |
| 21 | 0653 | 1735 | 0648 | 1716 |
| Aug 1 | 0648 | 1741 | 0642 | 1722 |
| 11 | 0641 | 1746 | 0634 | 1729 |
| 21 | 0632 | 1750 | 0624 | 1735 |
| Sep 1 | 0621 | 1754 | 0612 | 1740 |
| 11 | 0611 | 1759 | 0600 | 1746 |
| 21 | 0559 | 1803 | 0548 | 1734 |


| Oct 1 | 0550 | 18 | 08 | 0537 | 1757 |
| ---: | ---: | :--- | :--- | :--- | :--- |
| 11 | 0539 | 1812 | 0525 | 1803 |  |
| 21 | 0527 | 1817 | 0512 | 1809 |  |
|  |  |  |  |  |  |
| Nov 1 | 0519 | 1824 | 0502 | 1817 |  |
| 11 | 0513 | 1832 | 0455 | 1826 |  |
| 21 | 0506 | 1839 | 0449 | 1834 |  |
|  |  |  |  |  |  |
| Dec 1 | 0507 | 1846 | 0448 | 1842 |  |
|  | 11 | 0508 | 1853 | 0448 | 1850 |
| 21 | 0512 | 1900 | 0452 | 1857 |  |

Cape Town

|  | Sunrise | Sunset | Sunrise | Sunset |
| :---: | :---: | :---: | :---: | :---: |
| Date |  | $h$ n | - h n | $h$ n |
| Jan 1 | 0538 | 2001 | 0521 | 1918 |
| 11 | 0546 | 2002 | 0529 | 1918 |
| 21 | 0555 | 1959 | 0537 | 1917 |


| Feb 1 | 0607 | 1952 | 0546 | 1913 |
| :---: | :---: | :---: | :---: | :---: |
| 11 | 0617 | 1944 | 0554 | 1906 |
| 21 | 0626 | 1933 | 0802 | 1857 |
| Mar 1 | 0633 | 1923 | 0608 | 1848 |
| 11 | 0641 | 1911 | 0613 | 1838 |
| 21 | 0649 | 1858 | 0618 | 1827 |
| Apr 1 | 0658 | 1841 | 0625 | 1813 |
| 11 | 0704 | 1830 | 0630 | 1803 |
| 21 | 0713 | 1817 | 0635 | 1752 |
| May 1 | 0720 | 1806 | 0642 | 1744 |
| 11 | 0728 | 1757 | 0649 | 1736 |
| 21 | 0734 | 1750 | 0654 | 1730 |
| Jun 1 | 0743 | 1745 | 0701 | 1727 |
| 11 | 0748 | 1744 | 0705 | 1726 |
| 21 | 0751 | 1744 | 0706 | 1727 |


| Jul | 1 | 0753 | 1748 | 0710 | 1730 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11 | 0751 | 1752 | 0706 | 1734 |
|  | 21 | 0747 | 1758 | 0705 | 1739 |
| Aug | 1 | 0739 | 1806 | 0700 | 1745 |
|  | 11 | 0730 | 1813 | 0653 | 1752 |
|  | 21 | 0719 | 1820 | 0642 | 1755 |
| Sep | 1 | 0706 | 1827 | 0631 | 1808 |
|  | 11 | 0652 | 1834 | 0619 | 1806 |
|  | 21 | 0638 | 1841 | 0607 | 1810 |
| Oct | 1 | 0625 | 1848 | 0557 | 1816 |
|  | 11 | 0612 | 1855 | 0545 | 1822 |
|  | 21 | 0558 | 1904 | 0533 | 1827 |
| Nov | 1 | 0546 | 1913 | 0524 | 1835 |
|  | 11 | 0538 | 1923 | 0517 | 1844 |
|  | 21 | 0531 | 1933 | 0512 | 1852 |
| Dec | 1 | 0529 | 1943 | 0511 | 1900 |
|  | 11 | 0528 | 1950 | 0511 | 1907 |
|  | 21 | 0532 | 1957 | 0515 | 1914 |

## TIME OF SLN'S TRANSIT OVER 30-DEGREE MERIDIAN

The times given below (SAST) indicate when the Sun transits the 30 -degree meridian. (On this neridian all sundials should read noon at given tines.)

$$
\begin{aligned}
& \text { Date h in } 5 \\
& \text { Jan } 1120328 \\
& 11 \quad 120727 \\
& 21 \quad 121117 \\
& \text { 31. } 121326 \\
& \text { Feb } 10 \quad 12: 1415 \\
& \text { \% } 0 \quad 121348
\end{aligned}
$$

Mar $2 \quad 121214$
$12 \quad 120952$
$22 \quad 120700$
Apr 1120358
$11 \quad 120108$
$21 \quad 115848$
May $1 \quad 115706$
$11 \quad 115622$
21 11 5631
$31 \quad 115734$
Jun 10 11 5922
$20 \quad 120125$
$30 \quad 1203 \quad 32$
Jul $10 \quad 120516$
$20 \quad 120618$
$30 \quad 120624$
Aug $9 \quad 120531$
$19 \quad 120340$
$29 \quad 120100$
Sep $8 \quad 115746$
$18 \quad 115414$
$28 \quad 115045$
Oct $8 \quad 114739$
$18 \quad 114514$
$28 \quad 114349$
Nov $7 \quad 114341$
$17 \quad 114457$
$27 \quad 114731$
Dec 7 1151 20
$17 \quad 115558$
$27 \quad 120055$
$31 \quad 120252$

## THE MOON

```
Basic Lunar Data:
```

| Dianeter | 3476 km (0,27 of Earth) |
| :---: | :---: |
| Mass | 1/81 of Earth |
| Mean Distance |  |
| fron Earth | 384400 km (Centre to Centre) |
| Perigee | 356410 kn (Closest distance to Earth) |
| Apogee | 406700 km (Farthest distance to Earth) |
| Sideral Period | 27.321661 days (Fixed star period) |
| Synodic Period | 29.530588 days (Neu Moon to New Moon) |
| Orbital Speed | $3680 \mathrm{kN} / \mathrm{hr}$. (Mean) |
| Escape Velocity | $2.38 \mathrm{kn} / \mathrm{sec}$. |
| Hean Magnitude | -12.7 (At Full Phase) |

The Moon's orbit about the Earth is an ellipse. The Moon is said to be at Perigee when it is nearest the Earth and at Apogee when it is farthest from Earth. The line connecting the points of perigee and apogee passes through the Earth and is called the line of apsides.

The centre-to-centre Ear th-Moon distance varies from a nininun of 356410 kn at perigee lo a naxinum of 406697 kn at apogee. Consequently, the apparent size of the Moon as seen fron Earth varies over the course of a nonth. At perigee, the Moon has an angular dianeter of $33^{\prime} 31^{\prime \prime}$, whereas at apogee the Moon's dianeter is only $29^{\prime}$ 22'. The average apparent size of the Moon is $31^{\prime} 5^{\prime}$ which corresponds to an average Earth-Moon distance of 384400 kn.

The average speed of the Moon along its orbit is 1.02 kiloneters per second. As seen from the Earth, the Moon appears to nove eastuards anong the constellations from one day to the next. The Moon's daily eastward progress averages 13.2 degrees (which is 360 degrees divided by the 27.3 days in the sidereal month). In one hour, the Moon noves nore than one-half degree, which is slightly nore than ils own dianeter. This rate of motion neans that the time of Moonrise is relarded by an average of about 50 ninutes from one day to the next.


- 16 -

MAP OF



THE MOON'S ORBIT
MOON AT PERIGEE

| Month | Day | Hour | Month | Day | Hour |
| :--- | ---: | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Jan. | 8 | 09 | Jan. | 20 | 03 |
| Feb. | 4 | 18 | Feb. | 17 | 00 |
| March | 1 | 12 | March | 16 | 21 |
| March | 28 | 16 | April | 13 | 14 |
| April | 25 | 20 | May | 11 | 01 |
| May | 24 | 05 | June | 7 | 04 |
| June | 21 | 15 | July | 4 | 10 |
| July | 19 | 22 | July | 31 | 23 |
| Aug. | 16 | 19 | Aug. | 28 | 17 |
| Sept. | 12 | 02 | Sept. | 25 | 12 |
| Oct. | 7 | 12 | Oct. | 23 | 08 |
| Nou. | 4 | 04 | Nou. | 20 | 00 |
| Dec. | 2 | 13 | Dec. | 17 | 07 |
| Dec. | 31 | 01 |  |  |  |

LLNAR ECLIPSES DURING 1986

During 1986 there will be two total eclipses of the Moon, April 24 and October 17.

24 April Total eclipse of the Moon
The beginning of the unbral phase will be visible in the western half of North America, the Pacific Ocean, eastern USSR and Asia, southeast Asia, Australia, New Zealand, eastern Indian Ocean, and Antarctica except the Atlantic coast; the end will be visible in Western Alaska, the Pacific Ocean, the Indian Ocean except Palmer Peninsula and Princess Margaret Coast, Australia, New Zealand, and central, eastern and southeast Asla.

Although the eclipse will not be visible fron South Africa, the following tines are supplied :-

| Moon enters penumbra | 12h 04 | (SAST) |
| :--- | :--- | :--- |
| Moon enters unbra | 13 h 02 |  |


| Moon enters totality | 14 h 10 |
| :--- | :--- |
| Middle of ectipse | 14 h 42 |
| Moon leaves totality | 15 h 14 |
| Moon leaves umbra | 16 h 22 |
| Moon leaves penunbra | 17 h 20 |

## 17 October Total eclipse of the Moon

The beginning of the umbral phase visible in New Zealand, Australia, western Pacific Ocean, eastern Antarctic, Asia, Europe except extreme west, Africa except the western extrenity; the end visible in extrene western Australia, eastern Antarctica, Indian Ocean, Asia except the extreme eastern parts, Europe, Africa, Greenland, extreme nor theastern North Anerica, eastern South Anerica, and the Allantic Ocean.

This eclipse will be visible fron South Atrica.

| Moon enters penunbra | 18 h 19 | (SAST) |
| :--- | :--- | :--- |
| Moon enters unbra | 19 h 29 |  |
| Moon enters totality | 20 h 40 |  |
| Midde of eclipse | 21 h 18 |  |
| Moon leaves totality | 21 h 55 |  |
| Moon leaves unbra | 23h 06 |  |
| Moon leaves penunbra | 00 h 16 (18.10.88) |  |

## MOONRISE AND MOONSET TIMES FOR JOHANESBURG, DURBAN AND CAPE TOWN

JOHANESBURG

> Rise Sel Rise Set Rise Set

January

| 1 | 22h58 | 9750 | 22h49 | 9 h 34 | 23h43 | 10 h 21 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 23 h 31 | 10 h 49 | 23 h 20 | 10 h 35 |  | 11 h25 |
| 3 | ----- | 11748 | 23h50 | $11 / 36$ | Ohl2 | 12 h 29 |
| 4 | 0 h 03 | 12 h 49 | ----- | 12 h 39 | 0 h 40 | 13 h 34 |
| 5 | Oh39 | 13 52 | Oh23 | 13 h 45 | Ihlo | 14643 |
| 6 | 1h36 | 14 5 59 | 0h58 | 14 h 5 | 1 l 49 | 15 h 55 |
| 7 | 2h 0 | 16 h 9 | 1h41 | 16 h 5 | 2h23 | 17h 9 |


|  | JOHANIESBURG |  | DUREAN |  | CAPE TOAN |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Set | Rise | Set | Rise | Set |
| 8 | 2h52 | 17h19 | 2h30 | 17 hl 16 | 3h11 | 18 h 22 |
| 9 | 3 h 50 | 18 h 26 | 3h28 | 18 h 23 | 4h 7 | 19h30 |
| 10 | 4h55 | 19 h 26 | 4h33 | 19 h 23 | 5h13 | 20 h 28 |
| 11 | 6 h 4 | 20 H 18 | 5 S 42 | 20 h 14 | 6 h 23 | 21h16 |
| 12 | 7h11 | 21h 2 | 6h51 | 20h57 | 7h34 | 21h56 |
| 13 | 8.15 | 21.40 | 7h57 | 21h32 | 8 h 42 | 22h29 |
| 14 | 9714 | 22h12 | 8 5 58 | 22 h | 9646 | 22h57 |
| 15 | 10h10 | 22n44 | 9 h 56 | 22 3 3 | 10 h 47 | 23h23 |
| 16 | Ifh 4 | 23h13 | 10 h 3 | 22ヶ59 | 11 45 | 23h48 |
| 17 | 11/57 | 23h41 | 11697 | 23n26 | J2h42 | ----- |
| 18 | 12h50 | ----- | 12h41 | 23h55 | 13 h39 | Oh13 |
| 19 | 13 h 43 | Oh12 | 13 h 36 | ----- | 14h36 | Oh40 |
| 20 | 14 h 37 | Oh45 | 14 h 32 | Oh26 | 15 h 34 | 1h10 |
| 21 | 15h33 | 1 h 22 | 15 h 29 | Ih 2 | 16 h 33 | 1443 |
| 22 | 16 h 29 | 2 h 4 | 16 h 26 | 1 h 42 | 17h31 | 2h22 |
| 23 | 17 h 23 | 2 h 5 | 17h21 | 2¢29 | 18 h 26 | 3h 8 |
| 24 | 18h15 | 3 h 44 | 18 h 13 | 3h22 | 19 h 17 | 4h 1 |
| 25 | 19h 2 | 4h42 | 18h59 | 4 h 20 | 20h 2 | 5h 0 |
| 26 | 19h45 | 5 h 42 | 19h41 | 5h21 | 20 4 41 | 6h 3 |
| 27 | 20 h 24 | 6h43 | 20 h 17 | ¢h24 | 21h15 | 7h 9 |
| 28 | 20 h 9 | 7h44 | 20h50 | 7h27 | 21 h 46 | 8h13 |
| 29 | 21133 | 8 8 44 | 21/22 | 8 h 29 | 22 h 15 | 9 h 18 |
| 30 | 22 h 5 | 9 4 43 | 21ヶ53 | 9730 | 22h43 | $10 \mathrm{h22}$ |
| 31 | 22h39 | 10h44 | 22h24 | 10h33 | 23h12 | 11h28 |

February

| 1 | $23 h 16$ | $11 h 45$ | $22 h 59$ | $11 h 37$ | $23 h 44$ | $12 h 35$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $23 h 56$ | $12 h 50$ | $23 h 37$ | $12 h 43$ | $-\cdots--$ | $13 h 44$ |
| 3 | $-\cdots--$ | $13 h 57$ | $-\cdots--$ | $13 h 52$ | $0 h 20$ | $14 h 55$ |
| 4 | $0 h 44$ | $15 h 4$ | $0 h 22$ | $15 h 1$ | $1 h 44$ | $16 h 7$ |
| 5 | $1 h 37$ | $16 h 11$ | $1 h 15$ | $16 h 8$ | $1 h 55$ | $17 h 15$ |
| 6 | $2 h 38$ | $17 h 12$ | $2 h 15$ | $17 h 10$ | $2 h 55$ | $18 h 15$ |
| 7 | $3 h 44$ | $18 h 7$ | $3 h 22$ | $18 h 4$ | $4 h 2$ | $19 h 7$ |
| 8 | $4 h 51$ | $18 h 53$ | $4 h 30$ | $18 h 48$ | $5 h 12$ | $19 h 49$ |
| 9 | $5 h 56$ | $19 h 34$ | $5 h 37$ | $19 h 27$ | $6 h 21$ | $20 h 25$ |
| 10 | $6 h 58$ | $20 h 9$ | $6 h 41$ | $20 h 0$ | $7 h 28$ | $20 h 55$ |


|  | JOHANESBURG |  | DURBAN |  | CAPE TON |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Set | Rise | Set | Rise | Set |
| 11 | 7h56 | 20 h 41 | 7h41 | 20h30 | 8h31 | 21 h 23 |
| 12 | 8 h 52 | 21h11 | 8 h 39 | 20 h 58 | $9 \mathrm{h32}$ | 21 h 48 |
| 13 | 9 h 46 | 21 h 40 | 9h35 | 21 25 | 10 h 30 | 22h!3 |
| 14 | 10h39 | 22h10 | 10h31 | 21/53 | 11 h 27 | 22h39 |
| 15 | 11/h32 | 22h42 | $11 / \mathrm{25}$ | 22 h 24 | 12 h 25 | 23h 7 |
| 16 | 12h27 | 23h18 | 12h21 | 22h58 | 13 h 23 | 23h40 |
| 17 | 13h22 | 23h57 | 13h18 | 23 h 36 | 14 h 22 | ---- |
| 18 | 14h18 | ----- | 14 h 15 | ----- | 15 h 20 | Oh16 |
| 19 | 15h13 | Oh42 | 15h10 | Oh20 | 16 h 16 | Oh59 |
| 20 | 16h 6 | Ih33 | 16h 3 | thio | 17 h 9 | 3h49 |
| 21 | 16 h 5 | 2h28 | 16 h 52 | 2h 6 | 17h56 | 2h45 |
| 22 | 17h40 | 3h28 | 17h35 | 3h 6 | 18 h 37 | 3h48 |
| 23 | 18h20 | 4h29 | 18h14 | 4h 9 | 19 h 14 | 4 5 53 |
| 24 | 18h57 | 5 h 31 | 18h49 | 5h13 | $19 \mathrm{h46}$ | 5h59 |
| 25 | 19h32 | 6 h 33 | 19h22 | 6h17 | 20 h 16 | 7h 5 |
| 28 | 20h 6 | 7h34 | 19h54 | 7h20 | $20 h 44$ | 8h12 |
| 27 | 20h40 | 8h35 | 20h26 | 8 h 24 | 2lh14 | 9h18 |
| 28 | 21h16 | 9738 | 21h 0 | 9 h 29 | 21/46 | 10 h 26 |

## March

| 1 | 21h55 | 10 h 43 | 21/36 | 10h35 | 22 h 20 | 11 h 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 22,40 | $11 \mathrm{h49}$ | 22 h 20 | $11 \mathrm{h44}$ | 23h 1 | 12 h 47 |
| 3 | 23h32 | 12 h 57 | 23h 9 | 12 h 4 | 23h49 | 13 59 |
| 4 | ----- | 14h 3 | ----* | 14 h 1 | ---... | 15h 7 |
| 5 | Oh29 | 15h 6 | $0 h 07$ | 15 h 4 | Oh46 | 16 h |
| 6 | 1h33 | 16 h 1 | 1h10 | 15 h 57 | 1 h 50 | 17h 2 |
| 7 | $2 \mathrm{h38}$ | $16 \mathrm{h49}$ | 2h17 | 16 h 44 | 2h58 | 17 h 47 |
| 8 | 3 h 43 | 17 h 30 | 3 h 23 | 17 h 24 | 4h 7 | 18 h 24 |
| 9 | 4h45 | 18 h 6 | 4 h 27 | 17758 | 5h13 | 18 h 55 |
| 10 | 5 h 44 | 18 h 39 | 5 h 28 | 18 h 29 | 6h17 | 19 h 23 |
| 11 | 6h40 | 19\% 9 | 6 h 26 | 18 57 | 7h17 | 19h48 |
| 12 | 7h35 | 19h39 | 7h23 | 19h25 | 8h16 | 20h14 |
| 13 | 8h29 | 20h 9 | 8h19 | 19 h 5 | 9h15 | $20 \mathrm{h40}$ |
| 14 | $9 \mathrm{h22}$ | $20 \mathrm{h40}$ | 9h14 | 20 h 22 | 10h13 | 21h 7 |
| 15 | 10h17 | $21 / 14$ | $10 \mathrm{hl0}$ | 20 h 5 | \|lhl| | 21h37 |
| 16 | 11 h 12 | 21 h 52 | 11h 7 | 21h31 | 12h10 | 22h12 |

## FOR JOHANESBURG. DURBGN AHD CAPE TON

|  | Rise | Set | Rise | Sel | Rise | Sel |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 17 | $12 h 7$ | $22 h 34$ | $12 h 4$ | $22 h 12$ | $13 h 8$ | $22 h 52$ |
| 18 | $13 h 3$ | $23 h 22$ | $13 h 0$ | $23 h 0$ | $14 h 5$ | $23 h 38$ |
| 19 | $13 h 56$ | ---- | $13 h 53$ | $23 h 52$ | $14 h 59$ | $---=-$ |
| 20 | $14 h 46$ | $0 h 15$ | $14 h 44$ | ---- | $15 h 48$ | $0 h 31$ |
| 21 | $15 h 32$ | $1 h 12$ | $15 h 28$ | $0 h 51$ | $16 h 31$ | $1 h 30$ |
| 22 | $16 h 14$ | $2 h 12$ | $16 h 9$ | $1 h 51$ | $17 h 9$ | $2 h 33$ |
| 23 | $16 h 52$ | $3 h 13$ | $16 h 45$ | $2 h 54$ | $17 h 43$ | $3 h 39$ |
| 24 | $17 h 27$ | $4 h 15$ | $17 h 18$ | $3 h 58$ | $18 h 14$ | $4 h 45$ |
| 25 | $18 h 2$ | $5 h 17$ | $17 h 51$ | $5 h 2$ | $18 h 44$ | $5 h 52$ |
| 26 | $18 h 36$ | $6 h 19$ | $18 h 23$ | $6 h 7$ | $19 h 13$ | $7 h 0$ |
| 27 | $19 h 12$ | $7 h 23$ | $18 h 57$ | $7 h 14$ | $19 h 44$ | $8 h 9$ |
| 28 | $19 h 52$ | $8 h 29$ | $19 h 34$ | $8 h 21$ | $20 h 18$ | $9 h 20$ |
| 29 | $20 h 36$ | $9 h 38$ | $20 h 16$ | $9 h 32$ | $20 h 58$ | $10 h 34$ |
| 30 | $21 h 28$ | $10 h 47$ | $21 h 4$ | $10 h 44$ | $21 h 45$ | $11 h 48$ |
| 31 | $22 h 23$ | $11 h 56$ | $22 h 1$ | $11 h 54$ | $22 h 40$ | $13 h 0$ |

JOHFNESBURG

Rise Se

OURBAN

Rise Sel

12h $4 \quad 22 h 12$
13 h 0 23h 0
13 h 53 23h52
14h44 -----
15 h 28 0h51
16h 9 Ih51
16h45 2h54
17h18 3h58
17h5! 5h 2
18 h 23 oh 7
18 h 57 7h14
19h34 8h21
20h16 9632
2lh 4 10h44
22h 1 11h54

CAPE TOWN

April

| 1 | $23 h 26$ | $13 h 1$ | $23 h 3$ | $12 h 59$ | $23 h 43$ | $14 h 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $-\cdots \cdots-$ | $13 h 58$ | ---- | $13 h 55$ | $-\cdots--$ | $15 h 0$ |
| 3 | $0 h 31$ | $14 h 48$ | $0 h 9$ | $14 h 44$ | $0 h 50$ | $15 h 47$ |
| 4 | $1 h 35$ | $15 h 30$ | $1 h 15$ | $15 h 25$ | $1 h 57$ | $16 h 25$ |
| 5 | $2 h 37$ | $16 h 7$ | $2 h 18$ | $16 h 0$ | $3 h 3$ | $16 h 58$ |
| 6 | $3 h 36$ | $16 h 40$ | $3 h 19$ | $16 h 31$ | $4 h 7$ | $17 h 26$ |
| 7 | $4 h 32$ | $17 h 10$ | $4 h 17$ | $16 h 59$ | $5 h 8$ | $17 h 52$ |
| 8 | $5 h 27$ | $17 h 40$ | $5 h 14$ | $17 h 27$ | $6 h 7$ | $18 h 17$ |
| 9 | $6 h 20$ | $18 h 9$ | $6 h 10$ | $17 h 54$ | $7 h 5$ | $18 h 42$ |
| 10 | $7 h 14$ | $18 h 40$ | $7 h 5$ | $18 h 23$ | $8 h 2$ | $19 h 8$ |
| 11 | $8 h 8$ | $19 h 13$ | $8 h 1$ | $18 h 54$ | $9 h 1$ | $19 h 37$ |
| 12 | $9 h 3$ | $19 h 49$ | $8 h 58$ | $19 h 29$ | $10 h 0$ | $20 h 10$ |
| 13 | $9 h 58$ | $20 h 29$ | $9 h 55$ | $20 h 7$ | $10 h 59$ | $20 h 47$ |
| 14 | $10 h 54$ | $21 h 15$ | $10 h 51$ | $20 h 53$ | $11 h 56$ | $21 h 31$ |
| 15 | $11 h 47$ | $22 h 5$ | $11 h 45$ | $21 h 42$ | $12 h 51$ | $22 h 22$ |
| 16 | $12 h 39$ | $23 h 0$ | $12 h 37$ | $22 h 38$ | $13 h 42$ | $23 h 17$ |
| 17 | $13 h 25$ | $23 h 58$ | $13 h 22$ | $23 h 37$ | $14 h 26$ | $---\cdots$ |
| 18 | $14 h 8$ | $--\cdots--$ | $14 h 4$ | $-\cdots--$ | $15 h 5$ | $0 h 18$ |
| 19 | $14 h 47$ | $0 h 57$ | $14 h 41$ | $0 h 37$ | $15 h 40$ | $1 h 21$ |

JOHANESBURG

|  | Rise | Set | Rise | Set | Rise | Set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 15 h 22 | 1 h 57 | 15h14 | 1h39 | 16h12 | 2h25 |
| 21 | 15h57 | 2h58 | 15 h 47 | 2h42 | 16h41 | 3h30 |
| 22 | 16 h 31 | 3 59 | 16 h 19 | 3 h 46 | 17h 9 | 4 h 37 |
| 23 | 17h 6 | 5h 2 | 16 h 52 | 4h5! | 17 h 40 | 5h46 |
| 24 | 17 h 44 | 6h 8 | 17h27 | 5h59 | 18h13 | 6 5 57 |
| 25 | 38h27 | 7h16 | 18h 8 | 7h10 | 18h51 | 8h11 |
| 26 | $19 \mathrm{hl7}$ | 8 h 28 | 18 56 | 8 m 24 | 19h36 | 9 h 27 |
| 27 | 20h13 | $9 \mathrm{h40}$ | 19h50 | 9738 | 20h30 | 10 4 43 |
| 28 | 21h15 | 10 h 49 | 20 h 52 | 10 47 | 21h32 | 11 53 |
| 29 | 22h21 | 11 52 | 21/59 | $11 / 50$ | 22h39 | 12 h 55 |
| 30 | 23h28 | 12h45 | 23h 7 | 12 h 42 | 23h49 | 13 h 45 |


| May |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | --- | [3h31 | ----- | 13 h 25 | - | 14627 |
| 2 | Oh31 | 14 l 10 | 0h12 | 14h3 | 0h56 | 15h 1 |
| 3 | 1h31 | 14443 | 1h14 | 14 h 35 | 2h 1 | 15 h 30 |
| 4 | 2 h 28 | 15h14 | 2h 12 | 15h 3 | 3h 1 | 15h57 |
| 5 | $3 \mathrm{h22}$ | 15643 | 3h 9 | 15h30 | 4h 1 | 16 h 21 |
| 6 | 4h15 | 16 h 12 | 4h 5 | 15 h 57 | $4 h 58$ | 16745 |
| 7 | 5h 8 | 16 h 42 | 4759 | 16 h 25 | 5h55 | 17h11 |
| 8 | 6h 2 | 17h13 | 5h54 | 16 h 55 | 6 ¢53 | 17h39 |
| 9 | 6 566 | $17 \mathrm{h48}$ | 6 h 50 | 17 h 29 | 7h52 | 18h11 |
| 10 | 7h5! | 18 h 27 | 7h47 | 18h 6 | 8 h 5 | 18h46 |
| 11 | 8h47 | 19h1! | 8744 | 18 ¢ 49 | 9 h 49 | 19 h 28 |
| 12 | 9 941 | 20h 0 | $9 \mathrm{h39}$ | 19 h 37 | 10h45 | 20h16 |
| 13 | 10h34 | 20 h 52 | 10h32 | 20h30 | 11 h 37 | 21h 9 |
| 14 | 11 h 21 | 21448 | 11 l 18 | 21/27 | 12 h 23 | 22h 8 |
| 15 | 12h 4 | 22h47 | 12 h 0 | 22h26 | 13h 3 | 23h 8 |
| 16 | 12 h 43 | 23h45 | 12 h 38 | 23 h 26 | 13h38 | ---- |
| 17 | 13 h 20 | ----- | 13 h 12 | ----- | 14h10 | Ohl1 |
| 18 | 13 h 53 | Oh43 | 13 h 44 | 0h26 | 14h39 | 1h14 |
| 19 | 14 h 26 | 1h43 | 14 h 15 | 1 h 28 | 15h 7 | 2 h 18 |
| 20 | 14 h 59 | 2 h 43 | 14646 | 2h30 | 15h36 | 3h23 |
| 21 | 15h35 | 3h46 | 15 h 20 | 3 h 36 | 16h 6 | 4 h 31 |
| 22 | 16 h 15 | 4h52 | 15 h 57 | 4h44 | 16h42 | 5h43 |
| 23 | 17h 2 | 6h 2 | 16 h 42 | 5h57 | 17h23 | 6h58 |
| 24 | 17h56 | 7h15 | 17 h 34 | 7h12 | 18 h 14 | 8h16 |

MOCNRISE AND MOONSET TIMES FOR JOHANESBURG, DURBAN GHD CAPE TOWN

|  | johar IESBURG |  | DURBAN |  | CAPE TOWN |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Set | Rise | Sel | Rise | Set |
| 25 | 18h57 | 8h28 | 18h34 | 8 h 26 | 19 h 14 | 9732 |
| 28 | 20h 5 | 9 h 36 | 19 h 42 | 9 h 34 | 20h22 | 10h40 |
| 27 | 21h14 | 10h36 | 20 5 5 | $10 \mathrm{h33}$ | 21h34 | 11 h 38 |
| 28 | 22h20 | 11426 | 22 h 1 | $11 \mathrm{h22}$ | 22h44 | 12 h 24 |
| 29 | 23h24 | 12h 9 | 23 h 6 | 12h 3 | 23 52 | 13h 2 |
| 30 | --.-- | 12 h 45 | --.... | 12 3 36 | ----- | 13 33 |
| 31 | Oh22 | 13 L 7 | OhO6 | 13 h 7 | Oh55 | 14h 1 |


| June |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ihl8 | 13 h 46 | 1h 4 | 13n34 | 1h55 | 14 h 25 |
| 2 | 2hil | 14 h 15 | 2h 0 | 14h 1 | 2 h 53 | 14h50 |
| 3 | 3h 4 | 14 h 45 | 2 h 55 | 14329 | 3 5 50 | 15h16 |
| 4 | 3h57 | 15h16 | 3h49 | 14 5 58 | 4547 | 15 h 42 |
| 5 | 4551 | 15h49 | 4145 | 15 h 30 | 5 h 46 | 16 h 13 |
| 6 | 5h46 | 16627 | 5 h 41 | 16 h 6 | 6 h 44 | $16 h 47$ |
| 7 | 6t,41 | 17\% 9 | 6 6 38 | 16747 | 7h42 | 17h26 |
| 8 | 7h36 | 17756 | 7h34 | 17h34 | 8 h 39 | 18h13 |
| 9 | 8729 | 18 h 48 | 8 h 27 | 18 h 25 | 9733 | 19h 4 |
| 10 | 9 h 18 | 19 h 43 | 9716 | $19 h 22$ | 10h21 | 20h 1 |
| 11 | 10h 3 | 20440 | 9159 | 20 h 20 | 11h3 | 23 h 1 |
| 12 | 10h43 | 21438 | 10 h 38 | 21h18 | 11 339 | 22h 3 |
| 13 | 11419 | 22h35 | 1/h12 | 22h18 | 12h11 | 23h 4 |
| 14 | 11/53 | 23h33 | $11 / 44$ | 23h17 | 12 h 40 | --... |
| 15 | 12 h 25 | --.-- | 12h15 | -- | 13h 8 | OhO6 |
| 16 | 12 h 57 | Oh30 | 12 h 44 | Oh17 | 13h35 | 1h09 |
| 17 | 13 h 30 | 1 h 30 | $13 \mathrm{hl6}$ | th19 | 14 h 4 | 2h13 |
| 18 | 14h 6 | 2h32 | 13 h 50 | 2 h 24 | 14 h 36 | 3 21 |
| 19 | 14 h 48 | 3h39 | 14 h 29 | 3 32 | 15 h 12 | 4h32 |
| 20 | 15 h 38 | 4 4 49 | 15 h 17 | 4h45 | 15 h 57 | 5h48 |
| 21 | 16 h 36 | 6h 2 | 16 h 14 | 5159 | 16 h 33 | 7h 4 |
| 22 | 17 h 42 | 7hi3 | 17 h 19 | 7h11 | 17 h 58 | 8h17 |
| 23 | 18 5 5 | 8 h 19 | 18h30 | 8 h 16 | 19 h 10 | 9 h 21 |
| 24 | 20 h 2 | 9 h 15 | 39h41 | 9711 | 20h24 | 10h14 |
| 25 | 21h 9 | 10h 2 | 20 h 5 | 9h56 | 21/36 | 10 h 7 |
| 26 | 22h11 | $10 \mathrm{h42}$ | 21h55 | $10 h 34$ | 22h43 | 11h32 |
| 27 | 23h10 | 11 hl 6 | 22 h 5 | 11h 7 | 23 h 46 | 12h |

MOONRISE AND MOONSET TIMES
FOR JOHANESBURG, DURBAN AND CAPE TONN

JOHANESBURG

|  | Rise | Set | Rise | Set | Rise | Set |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | ----- | 11647 | 23h53 | 11436 | ----- | 12 h 28 |
| 29 | Oh 6 | $12 \mathrm{hl7}$ | ----- | 12h 4 | Oh46 | 12 h 54 |
| 30 | Oh59 | 12 h 46 | Oh49 | 12h31 | 1h44 | 13h19 |


| 1 | 1h52 | 13h17 | 1543 | 13h 0 | 2h41 | 13h45 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 h 46 | 13h50 | 2 h 39 | 13h31 | 3 h 40 | 14 h 14 |
| 3 | 3h40 | 14 h 26 | 3h35 | 14h6 | 4h38 | 14147 |
| 4 | 4h36 | 15h 7 | 4h32 | $14 \mathrm{h45}$ | 5 h 36 | 15 h 25 |
| 5 | 5h32 | 15 h 52 | 5h29 | 15 h 30 | 6 h 34 | 16h 9 |
| 6 | 6h25 | $16 \mathrm{h43}$ | 6h22 | 16 h 20 | 7h28 | 17h 0 |
| 7 | 7h15 | 17h38 | 7h13 | 17h16 | 8 h 18 | 17h56 |
| 8 | 8h 2 | 18h36 | 7h58 | 18h15 | 9 h 2 | 18 h 56 |
| 9 | 8 h 43 | 19h33 | 8 h 39 | 19 h 14 | $9 \mathrm{h40}$ | 19557 |
| 10 | 9 h 20 | $20 \mathrm{h31}$ | 9 h 14 | 20 h 12 | 10h14 | 20h58 |
| 11 | 9754 | 21/27 | 9746 | 21h1! | 10h44 | 22h 0 |
| 12 | 10 h 27 | 22h24 | 10 h 17 | 22h10 | 11h11 | 23h 1 |
| 13 | 10 h 58 | 23h22 | 10h46 | 23h10 | 11437 | ----- |
| 14 | 11 h 30 | ----- | 11h16 | -- | 12h 5 | Oh 3 |
| 15 | 12h 4 | Oh21 | 11488 | Ohl2 | 12 h 34 | Ih 8 |
| 16 | 12h42 | 1h24 | 12 h 23 | 1h17 | 13h 8 | 2 h 16 |
| 17 | 13 h 26 | 2h30 | 13h 6 | 2h25 | 13 h 47 | 3h27 |
| 18 | 14 h 18 | 3h40 | 13456 | 3h37 | 14 h 36 | 4h42 |
| 19 | 15 h 19 | 4h51 | 14 h 56 | 4h49 | 15h36 | 5h54 |
| 20 | 16 h 27 | 5 h 88 | 18 h 5 | 5h56 | 18 h 45 | 7h 2 |
| 21 | 17239 | 6 h 59 | 17 h 17 | 6h56 | 17h59 | 8 h 0 |
| 22 | 18 h 48 | 7h50 | 18 h 28 | 7h46 | 19h12 | 8h48 |
| 23 | 19h54 | 8 3 34 | 19h37 | 8 h 28 | 20h24 | 9 h 27 |
| 24 | 20h56 | 9 h 12 | 20 h 41 | 9 h 3 | 21h30 | 10h 0 |
| 25 | 2Ih54 | $9 \mathrm{h45}$ | 21441 | 9735 | 22h33 | 10h28 |
| 26 | 22 h 49 | $10 \mathrm{hl6}$ | 22h38 | 10 h 4 | 23h33 | 10 h 5 |
| 27 | 23h44 | 10 h 46 | 23h35 | 10h32 | ----- | 11 h 20 |
| 28 | ----- | 1 [h17 | ----- | 1 h 0 | Oh32 | 11.46 |
| 29 | Oh38 | 11449 | Oh31 | 1! 1 3! | 1h31 | 12h14 |
| 30 | 1 h 33 | 12h25 | 1h28 | 12h 5 | 2h29 | 12h46 |
| 31 | 2h29 | 13h 3 | 2h25 | 12 h 42 | 3h29 | 13h22 |

MOOTRISE AND MOONSET TIMES FOR JOHANESBURG, DURBAN AND CAPE TOWN
jOHANESBURG
Rise Sel
Augus 1

| 1 | 3h25 | 13h48 | 3 h 22 | 13h25 | 4 h 26 | 14h 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4h19 | 14h37 | 4h16 | 14 h 14 | 5 h 22 | 14h53 |
| 3 | 5h11 | 15h31 | 5h 9 | 15h 8 | 6h19 | 15h47 |
| 4 | 5h59 | 16 h 28 | 5h56 | 16h7 | 7h 0 | 16 h 47 |
| 5 | 6h42 | 17h26 | 6h38 | 1766 | 7 h 40 | 17 h 48 |
| 6 | 7h21 | 18h25 | 7h15 | 18 h 6 | 8 B 15 | 18h51 |
| 7 | 7h56 | 19h23 | 7h48 | 19\% 6 | 8 h 46 | 19h54 |
| 8 | 8 h 29 | 20 h 20 | 8 h 20 | 20h 5 | 9 h 14 | 20 55 |
| 9 | 9 h 0 | $21 \mathrm{hl7}$ | 8 h 49 | 21h 5 | 9h41 | 21h58 |
| 10 | 9733 | 22h16 | 9h18 | 22h 6 | 10h 8 | 23h 2 |
| 11 | 10h 5 | 23n17 | 9749 | 23h 9 | 10h36 | ----- |
| 12 | 10h4! | ----- | 10h24 | ----- | 11/ 8 | Oh07 |
| 13 | 11 h 22 | Oh20 | 1/h 2 | Ohis | 11744 | 1h16 |
| 14 | 12 h 10 | 1h28 | 11749 | th24 | 12 h 29 | 2 h 27 |
| 15 | 13h 6 | 2 h 37 | $12 \mathrm{h43}$ | 2h34 | 13h22 | 3h40 |
| 16 | 144 9 | 3743 | 13446 | 3h41 | 14h26 | 4h48 |
| 17 | 15 h 18 | 4 4 45 | 14 ¢56 | 4 h 43 | 15h36 | 5h48 |
| 18 | 16 h 27 | 5h39 | 16 h 6 | 5h36 | 16650 | 6h39 |
| 19 | 17h35 | 6 h 26 | 17 hl 7 | 6h20 | 18h 1 | 7 h 20 |
| 20 | 18 h 38 | 7 h 6 | 18 h 22 | \%h58 | 19h10 | 7h55 |
| 21 | 19 h 39 | 7h41 | 19h25 | 7h31 | 20416 | 8 h 26 |
| 22 | 20 h 37 | 8 h 13 | 20 h 25 | 8h 2 | 2 h 18 | 8 5 53 |
| 23 | 21h33 | 8144 | 21ヶ23 | 8 3 30 | 22h19 | 9 h 20 |
| 24 | 22 h 28 | 9 h 15 | 22h20 | 8 59 9 | 23h18 | 9 h 46 |
| 25 | 23 h 23 | 9 h 47 | $23 \mathrm{hl7}$ | 9h29 | ---- | 10h13 |
| 26 | ----- | 10h21 | ----- | 10h 2 | Oh18 | 10h44 |
| 27 | Oh20 | 10 h 9 | Oh15 | 10h38 | 1h18 | 11h19 |
| 28 | 1h15 | $11 / 41$ | Ihl2 | 11 h19 | 2h17 | 11/59 |
| 29 | 2h10 | 12h29 | 2h 8 | 12h 7 | 3h14 | 12h45 |
| 30 | 3 h | 13h21 | 3b 1 | 12 h 58 | 4h 7 | 13h37 |
| 31 | 3h53 | 14 h 37 | 3 5 51 | 13h55 | 4 4 55 | 14h35 |

1 4h38 15h15
2 5h19 16h14

| $4 h 34$ | $14 h 54$ |
| :--- | :--- |
| $5 h 14$ | $15 h 55$ |

5h37 15h36
6 h 14 16h39

|  | JOHANESBURG |  | DURBAN |  | CAPE TOAN |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Set | Rise | Sel | Rise | Set |
| 3 | 5h55 | 17 h 13 | 5h48 | 16 h 55 | 6h47 | 17h42 |
| 4 | 6 h 29 | 18hl1 | 6h20 | 17h56 | 7h17 | 18h45 |
| 5 | 7h 1 | 19 hlo | 6h51 | 18 5 57 | 7h44 | 19h49 |
| 6 | 7h34 | 20h 9 | 7h21 | 19h58 | $8 \mathrm{hl1}$ | 20h53 |
| 7 | 8 h 6 | 21h10 | 7h51 | 2fh 2 | 8h39 | 21h59 |
| 8 | 8 4 41 | 22h14 | 8 2 25 | 22h 7 | 9 h 10 | 23h 8 |
| 9 | 921 | 23h21 | 9 h 1 | 23h16 | $9 \mathrm{h44}$ | --- |
| 10 | 10h 6 | ----- | 9 hab | ----- | 10h27 | Oh19 |
| 11 | 10h59 | 0 h 28 | 10 h 37 | Oh25 | 1 h 17 | 1h31 |
| 12 | $11 / 59$ | 1h35 | 11/37 | th33 | 12h15 | 2h39 |
| 13 | 13 h 4 | $2 \mathrm{h37}$ | 12 h 42 | 2h35 | 13h22 | 3h41 |
| 14 | 14 h 14 | 3 3 2 | 13 h 5 | 3h29 | 14 h 33 | 4 3 34 |
| 15 | 15 h 19 | 4h21 | 15h 0 | 4 l 16 | 15h44 | 5h17 |
| 16 | 16 h 23 | 5h 2 | 16 h 6 | 4h55 | 16 h 53 | 5h54 |
| 17 | 17 h 24 | 5h38 | 17 h 9 | 5 h 29 | 17h59 | 6h25 |
| 18 | 18h23 | 6hll | 18h10 | 6h 0 | 19h 2 | 6h53 |
| 19 | $19 \mathrm{h20}$ | 81,42 | 19\% 9 | 6h29 | 20h 4 | 7h20 |
| 20 | 20 h 16 | 7h13 | 20h 7 | 6h58 | 21/ 4 | 7h45 |
| 21 | 21h12 | 7h44 | 21h 5 | 7 h 27 | 22h 5 | 8 h 13 |
| 22 | 22h 8 | 8 h 18 | 22h 3 | 7h59 | 23h 5 | 8 h 42 |
| 23 | 23h 5 | 8 54 | 23h 1 | 8 h 34 | ----- | $9 \mathrm{hl5}$ |
| 24 | ----- | 9735 | 23h58 | 9 h 13 | 0 O 05 | 9 h 53 |
| 25 | Oh 1 | 10h20 | --- | 9 h 58 | in 3 | 10h37 |
| 26 | Oh55 | 11h11 | Oh52 | 10 h 48 | Ih58 | 11 h 27 |
| 27 | 1h46 | 12h 5 | 1744 | $11 / 43$ | 2h49 | 12 h 22 |
| 28 | 2h32 | 13h 2 | 2 h 29 | 12h41 | $3 \mathrm{h33}$ | 13 h 22 |
| 29 | 3 h 12 | 14 h 0 | 3 h 10 | 13 h 40 | 4 h 12 | 14 h 23 |
| 30 | 3 5 2 | 14 5 59 | 3 h 46 | 14h41 | 4 h 46 | 15 h 26 |

October

| 1 | $4 h 27$ | 15 h 58 |
| :--- | :--- | :--- |
| 2 | 4 h 59 | 16 h 56 |
| 3 | 5 h 32 | 17 h 56 |
| 4 | 6 h 5 | 18 h 58 |
| 5 | 6 h 40 | 20 h 3 |
| 6 | 7 h 19 | 2 h 10 |
| 7 | 8 h 3 | 22 h 19 |


| 4h19 | 15h41 | 5h16 | 16 h 30 |
| :---: | :---: | :---: | :---: |
| 4h50 | 16 h 42 | 5h44 | 17h33 |
| 5h20 | 17 h 45 | 6hi2 | 18 h 38 |
| 5h5! | 18 4 49 | 6h40 | 19h45 |
| 6h24 | 19h55 | 7h10 | 20455 |
| 7h 0 | 21h 5 | 7h44 | 22h 7 |
| 7h43 | 22 h 6 | 8h24 | 23h21 |

MOONRISE AND MOONSET TJMES FOR JOHANIESBURG, DURBPA AND CAPE TOWN

|  | JOHFNESBURG |  | durben |  | CAPE TOWN |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Set | R/5e | Set | Rise | Sel |
| 8 | 8 5 55 | 23h28 | 8732 | 23 h 26 | 9 h 12 | ----- |
| 9 | 9 h 53 | ----- | 9730 | ----- | 10h 9 | Oh32 |
| 10 | 10 h 57 | Oh32 | 10 h 34 | Oh31 | 11 h 14 | 1 1h36 |
| 11 | 12h 4 | 1h30 | 11 h 42 | 1h27 | 12h23 | 2h32 |
| 12 | 13 h 10 | 2h19 | 12 h 50 | 2h15 | 13 h 33 | 3h18 |
| 13 | $14 \mathrm{hl4}$ | 3h 2 | 13 556 | 2 L 56 | 14 h 42 | 3455 |
| 14 | 15 h 15 | 3h38 | 14 h 99 | 3 h 30 | 15 h 47 | 4 h 27 |
| 15 | 3 6 h 3 | 4h11 | 15159 | 4h 2 | 16 h 50 | 4 h 56 |
| 16 | 17h 9 | 4 4 42 | 16 h 57 | 4 h 30 | 17h51 | 5h21 |
| 17 | 18 h | 5h12 | 17h55 | 4h58 | 18 h 52 | 5h47 |
| 18 | 19h 1 | 5 h 43 | 18 h 53 | 5 h 27 | 19h52 | 6 l 14 |
| 19 | 19 h 57 | 6h16 | 19h51 | 5h58 | 20h52 | $6{ }^{6} 42$ |
| 20 | 20h54 | 6h5! | 20 h 50 | 6 h 32 | 21h54 | 7h14 |
| 21 | 21 51 | 7h30 | 21 4 48 | 7h 9 | 22h52 | 7h49 |
| 22 | 22 h 45 | 8 l 14 | 22 h 43 | 7h52 | 23h49 | 8 B 31 |
| 23 | 23h38 | 9 h 2 | 23h36 | 8 h 40 | -...- | 9 h 18 |
| 24 | ----- | 9 h 55 | ----- | 9 h 32 | Oh41 | 10h11 |
| 25 | Oh25 | 10 h 0 | Oh23 | 10 h 28 | 1 h 28 | 11h 8 |
| 26 | 1h 9 | 11.47 | Ih 5 | $11 \mathrm{h27}$ | 2h B | 12h 8 |
| 27 | 1148 | $12 \mathrm{h44}$ | Ih43 | 12 h 25 | 2h43 | 13 h 10 |
| 28 | 2 h 23 | 13 h 42 | 2 h 16 | 13 h 25 | 3 h 14 | 14 h 12 |
| 29 | 2 h 56 | 14 h 40 | 2h48 | 14 h 25 | 3 h 43 | 15 h 14 |
| 30 | 3 h 28 | 15 h 39 | $3 \mathrm{hl7}$ | 15h26 | 4h10 | 16 h 18 |
| 31 | 4h 0 | 16 h 39 | 3h47 | 1 6h29 | 37 | 17 h 24 |

Nouember

| 1 | 4734 | 17h44 |
| :---: | :---: | :---: |
| 2 | 5h12 | 18751 |
| 3 | 5h55 | 20h 2 |
| 4 | 6h45 | $2 \mathrm{hh13}$ |
| 5 | 7h42 | 22h22 |
| 6 | 8 h 47 | 23h24 |
| 7 | 9755 | --..- |
| 8 | 11/h 3 | Oh17 |
| 9 | 12h 7 | Ih 2 |
| 0 | 13 h 9 | 1 140 |
|  | 14h 7 | 2 h 1 |


| 4h19 | 17h35 | 5h 6 | 18 h 33 |
| :---: | :---: | :---: | :---: |
| 4h54 | 18 h 45 | 5h39 | 19 h 46 |
| 5h35 | 19 h 5 | 6 h 17 | 21h 2 |
| 6 h 23 | 21h11 | 7h 4 | 22h16 |
| 7h20 | 22 h 20 | 7h59 | 23h26 |
| 8 L 24 | 23 h 22 | 9 h 3 | ----- |
| $9 \mathrm{h33}$ | ----- | 10 l 13 | $0 \mathrm{L27}$ |
| 10h43 | 0h14 | 11 h 25 | 1h17 |
| $11 / 49$ | 0h57 | 12h34 | 1 h 56 |
| 12h52 | 1h33 | 13 4 40 | 2 h 30 |
| 13h52 | 2h 5 | 14643 | 2 h 9 |

MOONRISE AND MOONSET TIMES
FOR JOHANIESBURG, DURBAN AND CAPE TOW

JOHANIESBURG

|  | Rise | Set |
| :---: | :---: | :---: |
| 12 | 15 h 3 | 2h45 |
| 13 | 15 h 58 | 3h15 |
| 14 | 16 h53 | 3h44 |
| 15 | 17 h 48 | 4h16 |
| 16 | 18 h 45 | 4 H 50 |
| 17 | 19n41 | 5h27 |
| 18 | 20 h 55 | 6h 9 |
| 19 | 2! 332 | 6h56 |
| 20 | 22 h 20 | 7h47 |
| 21 | 23h 5 | 8h41 |
| 22 | 23h44 | 9 h 38 |
| 23 | ----- | 10 h 34 |
| 24 | 0h20 | 11 30 |
| 25 | Oh54 | 12 h 26 |
| 26 | 1 h 25 | 13 h 22 |
| 27 | 1 h 56 | 14 2 21 |
| 28 | 2h28 | 15h21 |
| 29 | 3h 3 | 16 h 26 |
| 30 | 3h43 | 17h36 |

DURBAN
Rise Set Rise Set
$14 \mathrm{~h} 50 \quad 2 \mathrm{~h} 34 \quad 15 \mathrm{~h} 43 \quad 3 \mathrm{~h} 26$
15 h 47 3h 1 16h43 3h51
1 6h44 3h29 17h42 4h16
$17 \mathrm{~h} 42 \quad 3 \mathrm{~h} 59 \quad 18 \mathrm{~h} 42 \quad 4 \mathrm{~h} 44$
18 h 40 4h31 19h43 5h14
19 h 38 5h 7 20h42 5h48
20 h 36 5h47 21h41 6h27
21h29 6h34 22h34 7h12
22h18 7h24
23h 1 8h19
23h40 9h17
----- 10h15
Oh14 11h13
$0 \mathrm{~h} 46 \quad 12 \mathrm{~h} 10$
1h15 13h 8
1h44 14h 9
2h14 15h12
2h47 16h19
3h24 17h31

CAPE TOAN

23h23 8h 4
----- 8h59
Oh 5 9h58
Oh41 10h57
1h13 11h58
1h42 12 h 58
2h $9 \quad 13 \mathrm{~h} 59$
2h35 15h 2
3h 3 16h 8
3h33 17h18
4h 8 18h33

Decenber

| 1 | 4h29 | 18 h 49 | 4h 9 | 18h46 | 4 h 50 | 19650 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5h24 | 20h 1 | 5h 2 | 19 h 59 | 5h42 | 21h 5 |
| 3 | 6 h 28 | 2 h 8 | 6h 5 | 21h 6 | 6 h 44 | 22h13 |
| 4 | 7h38 | 22h 8 | 7h16 | 22 h 4 | 7h55 | 23h 9 |
| 5 | 8 4 49 | 22h58 | 8 h 27 | 22h53 | 9 h 10 | 23h54 |
| 6 | 9157 | 23h39 | 9 h 38 | 23h33 | 10 h 22 | ----- |
| 7 | Ith 2 | ----- | 10 h 45 | ----- | 11 h 32 | Oh31 |
| 8 | 12h 2 | 0h15 | 11647 | On 6 | 12h36 | 1h 2 |
| 9 | 12 h 59 | $0 \mathrm{h47}$ | 12 h 46 | 0 h 37 | 13 h 38 | 1 130 |
| 10 | 13 h 4 | 1h18 | 13 h 43 | 1h 5 | 14 3 37 | 1 l 56 |
| 11 | 14648 | 1h47 | 14 h 39 | 1h32 | 15 h 36 | 2 h 20 |
| 12 | 15 h 43 | 2h18 | 15 h 36 | 2h 1 | 18 h 36 | 2h47 |
| 13 | 16 h 39 | 2 h 51 | 16 h 34 | 2 h 32 | 17h35 | 3h15 |
| 14 | 17h35 | $3 \mathrm{h27}$ | 17h31 | 3h7 | 18h35 | 3h48 |
| 15 | 18h31 | 4h 7 | 18h28 | 3645 | 19h33 | 4 h 26 |
| 16 | 19 h 25 | 4 h 52 | 19 h 23 | 4 h 30 | 20 h 29 | 5h 9 |

## MOONRISE ANG MOONSET TIMES FOR JOHANIESBURG. DURRAN ARD CAPE TONN

|  | JOHFHPESBURG |  | OURBAN |  | CAPE TOWN |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rise | Sel | Rise | Sel | Rise | Sel |
| 17 | 20 h 16 | 5h42 | 20 H 14 | 5h19 | 21h19 | 5 h 58 |
| 18 | 21h 2 | $6{ }_{6} 35$ | 20h59 | 6h13 | 22h 3 | 6 h 52 |
| 19 | 21 44 | 7h31 | 21h40 | 7hio | 22h4! | 7h5! |
| 20 | 22h20 | 8 h 28 | 22h14 | 8h 8 | 23h15 | 8 h 50 |
| 21 | 22h54 | $9 \mathrm{h23}$ | 22h46 | 9 h 5 | 23h44 | 9 h 50 |
| 22 | 23h25 | 10 h 18 | 23h16 | 10h 2 | ----- | 10 h 49 |
| 23 | 23h54 | 1/h13 | 23h43 | 10 59 | 0 h 10 | 11 h48 |
| 24 | ----- | 12h 8 | -- | 11755 | Oh36 | 12 h 48 |
| 25 | Oh25 | 13ヶ6 | Oh12 | 12 h 55 | 1h 2 | 13 h 50 |
| 26 | 0 H 57 | 14h 6 | Oh42 | 13 h 58 | 1h29 | 14 h 56 |
| 27 | Ih33 | 15h11 | 1his | 15h 5 | 2h 1 | 16 h 6 |
| 28 | 2h15 | 16h21 | ih55 | 16h17 | 2 h 38 | 17 h 20 |
| 29 | 3h 5 | 17 h 33 | 2h43 | 17h31 | 3h24 | 18h36 |
| 30 | 4h 3 | 18 h 4 | 3h41 | 18h42 | 4 h 20 | 19 h 48 |
| 31 | 5h12 | 19749 | 4149 | 19 4 47 | 5h28 | 20h5! | <br> \title{

THE PLANETS
} <br> \title{
THE PLANETS
}

## MERCURY

Basic data on Mercury:


## VISIBILITY OF MERCURY

Mercury can only be seen low in the east before sunrise, or low in the west after sunset. It is visible in the nornings between the following approximate datess

January 1 to January 17
March 24 to May 15
July 31 to August 28
Noventer 19 to Decenber 27
The planet is brighter at the end of each period (the best conditions in southern latitudes occur in April.) It is visible in the evening between the following approximate dates:

February 13 to March 10
May 31 to July 16
Septenber 17 to Novenber 7
The planet is brighter in the beginning of each period (the best conditions in southern latitudes occur in October.)

On Novenber 13th a rather interesting phenonenon will occur. Mercury will transit the Sun's disc. First conlact will occur at 03h 43. At 06h 07, minimun geocentric angular distance will be 7' 50 .6. At this tine nost of South Africa will be able to see the event. Final contact will occur at 08h 31. The next transit of Mercury vill only occur on November 6, 1993.

WAPNING : DO NOT view the Sun or this transit of Mercury without proper protessionally nade protective accessories (Solar Filters or Solar Projection screens), as irreparable harn can be done to the eyes.
Minors should never vieu the Sun without adult supervision!

## UENUS

Basic data for Venus:

| Mean distance tron Sun | 108200000 km |
| :---: | :---: |
| Mean orbital velocity | $35.0 \mathrm{~km} / \mathrm{sec}$ |
| Revolution period | 224.70 days |
| Rotation period | 243.01 days |
| Dianeter | 12104 km |
| Surface gravity | 0.903 (Earth $=1)$ |
| Escape velocity | $10.3 \mathrm{kn} / \mathrm{sec}$ |
| Mean surface tenperature | : 480 deg C |
| Brightest nagnitude | -4.4 |

## VISIBILITY OF VENUS

Venus is too close to the Sun for observation from the beginning of the year until early March, and can then be seen as a brilliant object in the evening sky until early Novenber. Venus reaches greatest brilliancy on October 1 (magnitude -4.6) and December 11 (magnitude -4.7). By nid-Novenber it appears as a morning star and can be seen in the norning sky for the rest of the year. Venus is in conjunction with Mercury on March 8th and October 18

Basic data on Earth:

| Mean distance fron Sun | $149600000 \mathrm{kn}(=1 \mathrm{AU})$ |
| :---: | :---: |
| Maximun distance from |  |
| Sun | 152100000 km |
| Mininum distance from |  |
| Sun | 147100000 km |
| Mean orbital velocity | $29.8 \mathrm{~km} / \mathrm{sec}$ |
| Revolution period | 365.256 day 5 |
| Rotation period | 23.9345 hours |
| Inclination of |  |
| equator to orbit | 23 deg $27^{\prime}$ |
| Diameter (equatorial) | 12756 kn |
| Escape velocity | $11.2 \mathrm{kn} / \mathrm{sec}$ |


| Autunn equinox $: 21$ March 00h 00 |  |
| :--- | :--- |
| Solstice | $: 21$ June 18 h 00 |
| Spring equinox | $: 23$ Septenber $10 h 00$ |
| Solstice | $: 22$ Decenber 06 h 00 |

> MARS

Basic data on Mars:


## VISIBILITY OF MARS

Mars rises well afler nidnight at the beginning of the year in Libra. Its westward motion gradually increases, and in February and March it noves through Scorpio, passing 5 deg. $N$ of Antares on February 17th, and then into Sagittarius. On July 10 Mars is in opposition and can therefore be seen throughout the night. It renains in Sagittarius until early October and then moves through Capricorn, Aquarius and into Pisces in late December. Fron nid-Novenber until the end of the year it can only be seen in the evening sky. Mars is in conjunction with Saturn on February 18 at 02 h 00 and with Jupiter on Decenber 19 at 09 h 00.

Throughout the year Mars varies in magnitude from +1.5 on January 1 to -2.7 on July 13 and then fades to 0.6 by the end of Decenber.

## THE MOONS OF MARS

Two tiny Moons move around Mars in orbits that are close to the planet surface. They are naned Phobos ('Fear") and Deimos ('Panic').
Phobos is the nearer and the larger of the Martian noons. It circles Mars in only 7 hours 39 ninutes, noving over the Martian surface at an average distance of only 6000 km .
Deinos, which is farther fron Mars and sonewhat snaller than Phobos, orbits Mars at a distance of about 20000 km . Large lelescopes are required to view the two moons.

## JUPITER

Basic data on Jupiler:

| Sun | . | 778300000 km |
| :---: | :---: | :---: |
| Mean orbital velocity | : | $13.1 \mathrm{~km} / \mathrm{sec}$ |
| Revolution period |  | 11.86 years |
| Rotation period at |  |  |
| equalor |  | 9 hrs 50 nin 30 sec |
| Equatorial dianeter |  | 143800 km |
| Surface gravity |  | 2.64 (Earth $=1$ ) |
| Escape Velocity | : | $61 \mathrm{kn} / \mathrm{sec}$ |
| Mean temperature (at |  | -110 deg [ |
| 8rightest magnitude | : | -2.6 |

Jupiter can be seen in the evening sky in Capricornus fron the beginning of the year until early February, when it noves too close to the Sun for observation. It reappears in the norning sky early in March in the constellation of Aquarius where it remains for the balance of the year. Jupiter is at opposition on Septenber 10 when it can be seen throughout the night, and fron early Decenber until the end of the year it can only be seen in the evening sky. Jupiter is in conjunction with Mars on December 19 at 09 hours. The magnitude of Jupiter changes fron -2.0 on January 1 st to -2.9 in Septenber and fades to -2.3 in Decenber.

## JUPITER'S MOONS

The planes of the orbits of the Galilean noons alnost correspond with the plane of the ecliptis as does that of Jupiter itself, and therefore, our line of sight. Consequently, we see Jupiter and these 4 setellites arranged in a fairly straight line. The inner satellites $\{1,11$, and III) also naned lo, Europa, and Ganymede are from Earth, always seen to transit Jupiter, or be occulted by it. Also the Sun is so close to the satellite plane that these always cast a shadow-transit on Jupiter's surface, and sułfer eclipses whenever passing behind Jupiter.

Satellite IV (Callisto) is considerably further from the planet than are the other three. It exhibits eclipses and transit phenonena when the satellite's orbital plane is sufficiently 'edge-on' to Earth and Sun.

It may be soneuhat mystifying to see a satellite approaching Jupiter and while still some distance from the planet gradually fade fron sight. This happens with an eclipse when the satellite enters the shadow cast by Jupiter which lies to the west of the planet before opposition. The reverse effect can be seen after opposition, when a satellite which has been occulted appears as a point of light, sone distance from the planet's disc, and gradually increases in brightness. At this tine the planet's shadow is to the east of the disc.
An indication of the distance at which these phenonena will occur from the disc of Jupiter may be obtained fron the small diagran listed below which shows disappearance (d) and reappearance ( $r$ ) of each satellite at the eclipse occuring nearest the niddle of the month; these small diagrans are appended for each nonth in which Jupiter is well placed for viewing. The diagrans show the positions of the four Galilean satellites relative to each other and the planet.
Each strip represents the movenents for one nonth indicating 0 Hours Universal Time (for South African Standard Tine add 2 hours) of each day.

The tuin verlical lines represent Jupiter and the four curves the notions of the satellites.
The satellites, labelled by Roman numerals, are $1=10,11=$ Europa, 111 = Ganymede, and $\mathrm{IV}=$ Callisto.

Amay from Jupiter's disc the satellites can be seen with binoculars, and the commencenent and ending of the eclipses can be seen on dates sufficiently before and after (respectively) the date of opposition. A telescope is needed for observing other phenomena, where the actual discs (in a diameter range in the order of 0.75 to 1.75 seconds of arc) of the satellites and their shadows, have to be 'resolved'. Mininum apertures of about 75 mm for shadous and 150 min for satellites in transit, are necessary. The satellite visibility depends on the contrast of albedos which vary anong the four and also in the narkings of their Jupiter background. The nagnification should be as high as possible. (The listed phenomena occur between one hour after sunset and one hour before sunrise, provided it is also not less than one hour after Jupiter rises or less than one hour before Jupiter sets. The tines of other phenmena outside these limitations may be obtained by reference to the Astrononical Almanac for 1986.)












## SATURN

## Basic Data on Saturn:

Mean distance fron

| the Sun | 1427000000 kn |
| :---: | :---: |
| Mean orbital velocity | $9.6 \mathrm{kn} / \mathrm{sec}$ |
| Revolution period | 29.46 years |
| Rotation period | : 10 hours 13 nin .59 sec . |
| Equatorial diameter | : 120660 km |
| Surface gravity | : 1.16 (Earth $=1)$ |
| Escape velocity | $35.6 \mathrm{kn} / \mathrm{sec}$ |
| Mean surface |  |
| temperature | : -180 deg. © (at cloud tops) |
| Brightest nagnitude | -0.3 |

## UISBILITY OF SATURN

Saturn rises before sunrise at the beginning of the year in Scorpio and noves into Ophiuchus in mid-January. It will be 7 degrees Nor th of star Antares in Scorpio on February 10 and aqain on April 26.

It returns to Scorpio in late May and is at opposition on May 28 when it can be seen throughout the night. By mid-October it returns to Ophiuchus where it will remain for the rest of the year.
On Novenber 3 it is again close to Antares, 6 degrees North.
Fron late August until shortly after nid-Novenber it can only be seen in the evening sky and then moves too close to the Sun for observation until late Decenber, when it appears in the norning sky. Saturn is in conjunction with Mars on February 18.

SATURA'S MOONS
Nearly two dozen satellites are known to orbit about Saturn. The nost prominent of these are :

| Nane | : Distance from Saturn |
| :---: | :---: |
| Minas | : 185540 km |
| Enceladus | 238040 km |
| Tethys | 294670 km |
| dione | : 377420 kn |
| Rhea | : 527100 km |
| Titan | : 1221860 km |
| Hyperion | : 1481000 kn |
| lapetus | : 3560800 km |
| Phoebe | : 12954000 kn |

## URANUS

Basic data on Uranus:

| Mean distance fron |  |
| :--- | :--- |
| Sun | $: 2869800000 \mathrm{kn}$ |
| Mean orbital velocity | $: 6.8 \mathrm{kn} / \mathrm{sec}$ |
| Revolution period | $: 84.01$ years |
| Rotation period | $: 23.9 \mathrm{hrs}$ |
| Dianeter | $: 52290 \mathrm{kn}$ |
| Surface gravity | $: 0.79$ (Earth $=1)$ |
| Escape velocity | $: 21.2 \mathrm{~km} / \mathrm{sec}$ |
| Surface tenperature | $:-216 \mathrm{deg} . \mathrm{C} \quad(57 \mathrm{~K})$ |
| Brightest nagnitude | $: 45.6$ |



## VISIBILITY OF URANUS

Uranus rises shortly before sunrise at the beginning of the year in Ophiuchus and renains in this constellation throughout the year. It is at opposition on June 11, when it can be seen throughout the night, it is too close to the Sun for observation from late Novenber until the end of the year. (see diagran belon)

## NEPTUNE

Basic data on Neptune:
Mean distance from

| Sun | : 9496600000 km |
| :---: | :---: |
| Mean orbital velocity | : $5.4 \mathrm{kn} / \mathrm{sec}$ |
| Revolution period | : 164.79 years |
| Rotation period | : 18 hour 5 |
| Surface gravity | : 1.12 (Earth = 1) |
| Escape velocity | : $23.6 \mathrm{~km} / 5 \mathrm{cc}$ |
| Surface lenperature | : -216 deg. [ (57 K) |
| Brightest magnitude | : 17.7 |

VISIBILITY OF NEPTUNE
Neptune is too close to the Sun for observation from the beginning of the year until nid-January, when it can be seen in the norning sky in Sagittarius. It renains in Sagittarius throughout the year. On June 26, Neptune is at opposition when it can be seen throughout the night. From early December until the end of the year it is again too close to the Sun for observation.
PLUTO

Basic dala on Pluto:
Mean distance from
Sun : 5900000000 kn
Mean orbital velocity: $4.7 \mathrm{~km} / \mathrm{sec}$
Revolution period : 247.7 years
Rotalion period : 24.6 hours
Dianeter : 3000 km (?)
Surface gravity $\quad: 0.4$ (2) (Earth $=1$ )
Escape velocity : $5 \mathrm{kn} / \mathrm{sec}$ (?)

## VISIBILITY OF PLUTO

Pluto can only be seen through a large telescope which has an aperture of at least 25 cm . The chart belou shows the approximate position of. Pluto in the constellation of Virgo during 1986.


# - 44 - <br> <br> comets 

 <br> <br> comets}

PREDICTED PERIHELION PASSAGES OF COHETS, 1986

| Name |  | Perithelian | date | Perioó (years) | Perihelion distance (Astronomical units) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Buethin |  | Jan 26 |  | 11.2 | 1.11 |  |
| Ashbrook-Jackso |  | Jan 24 |  | 7.5 | 2.31 |  |
| Halley |  | Feb 9 |  | 76.0 | 0.59 |  |
| Holmes |  | Mar 14 |  | 7.1 | 2.17 |  |
| Wirtanen |  | Mar 20 |  | 5.5 | 1.08 |  |
| Kojifind |  | Apr 5 |  | 7.9 | 2.41 |  |
| Spitaler |  | May 17 |  | 6.5 | 1.84 |  |
| Shajn-Schaldach |  | May 27 |  | 7.5 | 2.33 |  |
| Whiople |  | Jun 25 |  | 8.5 | 3.08 |  |
| Wild 1 |  | Oct 1 |  | 13.3 | 1.98 |  |
|  |  | COMET | HALLEY |  | Distance | Magnitude |
| Date |  | R A | Dec |  |  |  |
|  | $h$ | m | deo | n |  |  |
| Jan 5 |  | 05.894 |  | 327.96 | 1.24 | 5.7 |
| Jan $10 \quad 2$ |  | 55.823 |  | 428.18 | 1.32 | 5.4 |
| Jan 15 2 |  | 46.624 |  | 523.34 | 1.40 | 5.1 |
| Jan $20 \quad 2$ |  | 37.828 |  | 616.92 | 1.47 | 4.8 |
| Jan $25 \quad 2$ |  | 29.092 |  | 711.89 | 1.52 | 4.5 |
| Jan 30 |  | 20.203 |  | 810.67 | 1.55 | 4.2 |
| Feb 42 |  | 11.099 | - 915.00 |  | 1.56 | 4.0 |
| Feb 9 2 |  | 01.872 |  | 1025.80 | 1.55 | 4.1 |
| Feb 142 | 20 | 52.711 |  | 1143.21 | 1.51 | 4.1 |
| Feb 19 20 |  | 43.786 |  | 1307.21 | 1.45 | 4.2 |
| Feb 24 |  | 35.119 | 1438.46 |  | 1.37 | 4.3 |
| Mar 1 |  | 26.520 |  | 1619.06 | 1.27 | 4.4 |
| Mar 6 |  | 17.556 |  | 813.12 | 1.16 | 4.5 |
| Mar 11 |  | 07.493 |  | 2027.34 | 1.04 | 4.5 |


| Mar 16 | 1955.140 | 2312.10 | 0.91 | 4.5 |
| :--- | :--- | :--- | :--- | :--- |
| Mar 21 | 1938.451 | 2642.86 | 0.79 | 4.4 |
| Mar 26 | 1913.571 | 3120.90 | 0.66 | 4.3 |
| Mar 31 | 1832.573 | 3724.52 | 0.55 | 4.1 |


| Apr 5 | 1719.738 | -4411.82 | 0.46 | 4.0 |
| ---: | ---: | ---: | ---: | ---: |
| Apr 10 | 1521.785 | 4723.82 | 0.42 | 4.0 |
| Apr 15 | 1320.433 | 4203.87 | 0.44 | 4.3 |
| Apr 20 | 1203.880 | 3247.80 | 0.52 | 4.8 |
| Apr 25 | 1121.967 | 2453.98 | 0.64 | 5.4 |
| Apr 30 | 1058.123 | 1913.50 | 0.77 | 6.0 |


| May 5 | 1043.812 | -1514.48 | 0.92 | 6.5 |
| :--- | ---: | ---: | ---: | ---: |
| May 10 | 1034.962 | 1224.29 | 1.08 | 7.0 |
| May 15 | 1029.490 | 1020.70 | 1.24 | 7.4 |
| May 20 | 1026.237 | 849.46 | 1.41 | 7.8 |
| May 25 | 1024.516 | 741.35 | 1.57 | 8.2 |
| May 30 | 1023.895 | 650.29 | 1.74 | 8.5 |


| Jun 4 | 1024.096 | - | 612.20 | 1.90 | 8.8 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Jun 9 | 1024.926 | 5 | 44.24 | 2.06 | 9.1 |
| Jun 14 | 1026.245 | 524.36 | 2.22 | 9.4 |  |
| Jun 19 | 1027.946 | 511.04 | 2.38 | 9.6 |  |
| Jun 24 | 1029.949 | 503.10 | 2.53 | 9.9 |  |
| Jun 29 | 1032.196 | 459.63 | 2.68 | 10.1 |  |



# The 

The hemispherical charts oiven do not pretend to be anything but basic. They are not of hioh accuracy, and on this projection there is bound to be a certain anount of distortion; they should, however, serve your imnediate needs.

Because the stars appear to rise about four minutes earlier every successive niaht, it follows that every week the stars will rise about thirty minutes earlier than the previous week; every month they will rise about two hours earlier than the previous nonth. It is for this reason that we see different stars and constellations throughout the year.

STARS OF SUTAER EVENINGS: LOOKING NORTH
AURIGA (The Charioteer) : The outstandina feature of this beautiful and proninent constellation is the star Capella, magnitude 0.2. The name Capella means 'She-Goat'. The area within the pentagonal figure of Auriga is rich in stars and clusters and is well worth sweepina with binoculars. Auriog lies directly in the plane of the Milky Hay.

CANIS MAJOR (The Great Doa) : Sirius, the briontest star in the sky (nagnitude -1.6 ) is the most conspicuous star in the constellation of the Great Doo. It is easily located by following downward the line connecting the three stars in the Bell of Orion. Sirius is the second nearest star to the Sun, being about 8.7 liaht years distant.

Sirius has a white duarf companion, a star so dense that one cubic netre weighs a few thousand metric tonnes. Observe Sirius in a telescope, particularly when rising or settino: it seens to change colour constantly and kaleidoscopically, with brilliant flashes of red, oreen, blue, orange, gold, white and turquoise (This effect is simply due to the Earth's atmosphere refracting the light of Sirius.)

CANIS MINOR (The Little Doa) : Canis Minor is easily located; its brightest star, Procyon, forms an equilateral triangle with Sirius in Canis Major and Betelaeuse in Orion.

Procyon is a star similar to our oun Sun, qolden-yellow in colour and having a magnitude of 0.5. making it the 8th briohtest star in the sky. The nane Procyon' means 'before the Doa', so called because it rises about half an hour before Sirius, the Doa Star.


SUMMER, LOOKING NORTH

GEIIN! (The Twins) : Genini is a conspicuous rodiacal constellation made up of two alnost parallel lines of stars with two bright stars, Castor and Pollux, at the head of each line. Castor and Pollux have lono been known as the Twins and oive the constellation its name.

The star 1 Geninorium is almost exactly at the location of the summer solstice, the northernmost doint of the Sun's journey around the celestial sphere. It was in Genini that the planets Uranus and Neptune were first discovered.

The open star cluster M35, considered to be one of the nost beautiful in the sky, can be located in Gemini with the aid of binoculars.

ORION (The Hunter) : Orion is oenerally considered to be the most beautiful and imposing constellation of the heavens. It is most easily recognised : the four brioht stars forming a large rectangle and the three second nagnitude stars, equally spaced and formino a straight line (the Belt of Orion) enclosed by a trianole, are a delight to the eye. No other constellation has somany briọht stars. Compare the colours of Betelgeuse, a giant red star depicting the Hunter's right shoulder, and Rigel (the left Knee star), a brilliant blue-white star. Riọel is of magnitude 0.3 and is the 7th brightest star in the 5 ky . Betelogeuse has a magnitude of 0.9 and ranks 12 th in brightness.

Orion is in a portion of the sky that contains seven of the twenty brightest stars in the heavens; these are to be found in Orion, Auriga, Gemini, Taurus, Canis Major and Canis Minor.

There are two fanous nebulae in Orion. One, the Great Nebula, is visible to the naked eye. It is the prototype of the diffuse nebula, a oreat cloud of cosmic dust 26 liạht years in dianeter and 1625 light years away. The 5 tar Theta Orionis marks the centre of the Great Nebula: viewed through binoculars, the star seens to be enveloded in a hazy field that narks the nebula's presence. Even in a small telescope, the Great Nebula is an awe-inspiring sight. The other fanous nebula is the so-called 'Horse's Head' nebula, a dark nebula silhouetted against a golowing cloud of cosnic dust in the shape of a horse's head. This renarkable object is not visible to the naked eye, lono photooraphic exposures are required to show its detail. The northernaost star in the belt of Orion lies almost exactly on the celestial equator. The three belt stars serve as valuable pointers: the line through them extended to the southeast points to Sirius, and extended to the northwest, to Aldebaran in Taurus.

TAURUS (The Bull): Taurus is a zodiacal constellation and is one of the oldest of the star oroups being recognized by the ancient Babylonians. Persians, Eayptians, and Greeks. An upside-doun ' $V$ '-shaped aroup of stars, the


SUMMER, LOOKING SOUTH
well-known Hyades cluster, forms the bull's face. Aldebaran, a great red star, is the bull's riọht eye; it ranks 13th in briọhtness, havinọ a naọnitude of 1.0. El Nath. al the tip of the bull's left horn, would seen to properly belong to the constellation of Auriopa; it is shared by both constellations.

The Pleiades (1445) make up the best open cluster in the entire sky. They lie in Taurus and are very proninent to the naked eye. The brightest stars, with their nag̣nitudes, are:

| Hane | Magnitude |
| :--- | :---: |
| Alcyone | 2.9 |
| Atlas | 3.6 |
| Electra | 3.7 |
| Maia | 3.9 |
| Merope | 4.2 |
| Taygete | 4.3 |
| Pleione | 5.1 (rather variable) |
| Celaeno | 5.5 |
| Asterope | 5.8 |

People with normal sight can see at least seven of the Pleiades under good conditions: the record exceeds 15, and binoculars will show many more. The total number of stars exceeds 400 , and the distance of the cluster is 410 light years. Most of the nembers of the cluster are hot, white and relatively young.

The Pleiades cluster also contains nebulosity. The nebular material shines by reflection, and is well studied only when photographed through a large telescope.

Look at the Pleiades with binoculars, or with a low power, wide-field eyepiece on a telescope. They make a magnificent spectacie.



## STARS OF SLATER EVENINGS: LOOKING SOUTH

VELA (The Sails) : Vela is part of the ancient constellation Argo Navis (The Ship) which is no longer recognised as a single constellation.

CARIIA (The Keel) : Carina is also part of Arọo Navis (The Ship), built by Aroos for Jason and his Argonauts. Carina is easily found near Canopus, the second brighlest star in the sky, It has been called the Great Star of the South. Probably because of the inaccessibility to the great telescopes of the northern henisphere. Canopus has not been adequately observed until recentiy, and different estimates of its distance, size and brightness have appeared in astronorical catalogues. A distance of over 800 light years has been quoted in many observing lists, and the luminosity has been thought to be as high as
60000 times that of the Sun. Modern studies do not support these large estimates, yet there is no doubt that Canopus is actually a very large and brilliant star when compared with our Sun.

According to measurements obtained at the $S$ A Astrononical Observatory in Sutherland, Cape, the distance of Canopus is in the ranoe of about 100 to 120 light years and the diameler about 30 times that of our Sun.

STARS OF AUTUTV EUENINGS: LOOKING NORTH
COTA BERENICES (Quepn Berenice's Hair) : Cona Berenices is an open cluster of 5th and 6th maọnitude stars about 15 deg. northwest of Canes Venatici. It should be observed on a clear and noonless night with binoculars when 20 to 30 stars can be seen, clearly suopesting the shape of a head of flowing hair. There are nany spiral galaxies in this constellation.

LEO (The Lion) : Leo is a zodiacal constellation and quite easily recognised. The stars forning the head of the lion are arranged in the shape of a sickle, or upside-doun '?'. Regulus, its brightest star, has a nagnitude of 1.3 and ranks 19th anono the 20 brightest stars in the sky. It lies almost exactly on the plane of the ecliptic and is therefore eclipsed by the Sun once a year con about August 23). A meteor shower, the Leonids, radiates from the head of the lion every year about 14th or 15th of Novenber.

STARS OF AUTUNN EVENINGS: LOOKING SOUTH
HYORA (The Sea Serpent) : Hydra is a long constellation stretching ouer 100 deg. through the heavens. It is rather difficult to identify because its stars are rather faint, with the exception of Alphard, also known as Cor Hydrae, the 'Draoon's Heart'. Alphard is a 2nd magnitude star, red in colour, and the only brioht star in the area. It forms a fat isoceles trianole with Regulus and


AUTUMN, LOOKING SOUTH

Denebola in Leo. The head of Hydra, a beautiful orouping of stars, lies directly south of the Bee-Hive cluster in Cancer.

STARS OF WINTER EVEINGS: LOOKING NORTH
CYGUUS (The Suan) : Cyonus is a beautiful and easily recognised constellation in the form of a giant cros5. If is sometines called the 'Nor thern Cross'. Deneb, the brilliant white star of magnitude 1.3 narks the top of the Cross or the Suan's tail. There are many bright stars in Cygnus; it lies in the aalactic plane and is therefore enbedded in the Milky Way. Sweep this entire area with binoculars and note the many stars.

HERCULES (Hercules) : This is one of the nost ancient of the constellations. The outstanding feature of Hercules is the great olobular cluster, M13. On dark niohts it is barely visible to the naked eye but is easily seen in binoculars. A small telescope beopins to reveal its beauty, while at least a 100 mm (4-inch) telescode is necessary to resolve the stars. In a large telescope, it is a never-to-be-forgotten sight. There are thought to be no less than 100000 stars in this cluster.

LYRA (The Lyre) : Lyra is easily identified because of Vega, a brilliant white star of naonitude 0.1 and four th brightest star in the $5 k y$. Four snaller stars lie in a faint but conspicuous parallelogran just to the southeast of Vega, Although a snall constellation, Lyra is rich in stars; sweep slowly with binoculars to explore the beauty.

## STARS OF WINTER EVEIINGS: LOOKING SOUTH

CRUX (The Southern Cross) : This well-Xnown constellation consists four bright slars in the shape of a cross, with a fifth, less-bright star depicting the misplaced centre of the cross. It is a useful reference for finding direction, since the upright bar of the cross points toward the south celestial pole.

SAGITTARIUS (The Archer) : Sagittarius is the southernnost of the zodiacal constellations, lying between Capricorn in the east and Scorpio in the west. The central part of Sagittarius has a group of stars resenbling in shape a giant teapot with spout and handle, an aid in identifying this constellation. The stars forming the handle and done of the teapot comprise a ọroup of stars known as the 'Milk Dipper', another distinquishing feature. Sap̣ittarius lies directly in the plane of the briạhtest part of the Milky Way. The Galactic Centre is located in this constellation. The region is very rich in star clusters and nebulae. An enornous nunber of stars also lie in this region of the sky and this is a orand area to scan with binoculars. Observe in binoculars the dark areas in the Milky Way: these are clouds of cosnic dust with no nearby stars to illuninate then.


WINTER, LOOKING NORTH

The famous 'Lagoon Nebula' (M8), 'Trifid Nebula' (M18) and Swan Nebula (M17) are also located in this constellation, but require larọe telescopes for detailed observation.

SCORPIUS (The Scorpion) : Scorpius is a very conspicuous zodiacal constellation lying just south of Ophiuchus. It is the most aptly named of all the constellations, bearing considerable resenblance to a giant scorpion with its sting poised to strike. Antares, a giant red star, is the brightest star in the constellation with a mannitude of 1.2. nakino it the loth brightest star in the sky. Il is a supergiant star: if it were in the Sun's position, its dianeter ( 650000000 kn ) would engulf the orbits of the asteroids between Mars and Jupiter. Its density is yery lowi on Earth it would be considered a vacuum. There are many objects worth observing with binoculars in this constellation: it lies in the Milky Way and is rich in countless stars. M6 and M7 are open clusters visible to the naked eye and striking when viewed with binoculars.

## STARS OF SPRING EVENINGS: LOOKING NORTH

DELPHWNUS (The Dolphin) : Delphinus is a compact, attractive group of five rather faint stars between Sagitta and Equuleus. It takes little inagination to picture a leaping dolphin. This is a splendid area for sweeping with binoculars as there are many striking objects.

PEGASUS (The Flying Horse) : The feature of this constellation is the 50 -called Great Square of Pegasus. The botton right-hand star, Alpheratz, actually belongs to the constellation of Androneda as well. The Square of Pegasus is conspicuous enough, though not perhaps quite as striking as it looks on star charts. One rather interesting experiment nay be done: look inside the square and see how nany stars can be counted with the naked eye. Then use binoculars and note how many more stars cone into view. The difference is quite renarkable.

STARS OF SPRING EVENINGS: LOOKING SOUTH
ERIDANUS (The River) : Eridanus is a quite extensive, winding constellation of faint stars that cannot be seen in its entirety. It begins just to the west of the left toot of Orion and traces a long sinuous line heading generally westward, then curving south and back to the east, eventually ending in the star Archenar.

GRUS (The Crane Bird) : Grus being a kite-shaped figure of four stars can be mistaken for the Southern Cross, but it is one of the Southern Birds, of which there are four - Grus (the Crane Bird), Phoenix (the Phoenix). Tucana (the


WINTER, LOOKING SOUTH

Toucan) and Pavo (the Peacock). Of all the regions in the sky, this is probably one of the nost difficult to 'sort out', partly because there are no obvious signposts and partly because of all the Birds, only Grus has a definite shape.

DORADO: (The Goldfish) One of the nearest of the external galaxies is located in the constellation of Dorado. The Large Magellanic Cloud appears to the naked eye like a detached Milky Way and is even bright enough to be visible in full moonliopht. The Small Magellanic Cloud is located in Tucana, These two galaxies were discovered by Portuguese 5 eamen in the 15 th century and later named in honour of Ferdinand Magellan. The Magellanic Clouds are irregular galaxies, members of the Local Group, and close enough to be regarded as possibly satellites of the Milky Way. According to recent studies the Large Magellanic Cloud is at a distance of about 190000 lighl years, and the Small Magellanic Cloud about 200000 light years. Owing to the ir positions in the far southern sky, the Clouds only been observed with telescopes in Australia and South Atrica.
The two Clouds are sone 22 degrees apart in the sky, corresponding to an actual separation of about 80000 light years, centre to centre.


SPRING, LOOKING NORTH

## CHARACTERISTICS OF STARS

SI2E
Supergiants are the largest stars and range from 100 to 1000 times the diancter of the Sun.

Giants are very large stars whose dianeter may be from 10 to 100 tines laroper than that of the Sun.

Main sequence stars range in size from snaller than Earth to several times the dianeter of the Sun.

COLOUR (as an indicator of temperature)
Colour Surface Tenperature Example

| Blue-white | 20000 to 33000 deg. C. | Rioel in Orion |
| :--- | :--- | :--- |
| White | 11000 dea. C. | Vega in Lyra |
| Yellow-White | 6000 deg. C. | Capella in Auriga |
| Orange | 4200 deg. C. | Arcturus in Bootes |
| Red | 3100 deg. C. | Antares in Scorpius |

## SPECTRAL CLASS

Stars are also classified according to their spectra, i.e. the physical and chenical characteristics that are revealed by the spectroscope. Each of the 11 spectral classes of 5 tars is desionated by a letter:

WOBAFGXMRNS
To enable astronomers to remenber the classification a memonic has been devised:
Wow Oh Be A Fine Girl Kiss Me Right Now Sureetheart
Ouer $99 \%$ of the approxinately 250000 stars classified accordino to their spectra, however, belong to the spectral classes of $0, B, A, F, G, K$ and $M$. Each spectral class is further subdivided by ten numerals rangino from 0 to 9 (eg. B1 A5 60 etc) to acconodate the small differences in spectral lines within a major class.

## MAGNITUDE

Magnitude is the classification of stars according to their brightness, calculated by two standards:
Absolute magnitude - the measure of a star's brightness at a distance of 10 parsecs (1 parsec = 3.26 light years).
Apparent magnitude - the neasure of a star's briọhtness as seen from Earth, which is determined by two factors: its distance and its absolute mannitude.

## TYPES OF STARS

Double star - one that appears as a sinale star to the naked eye but is revealed to be two stars when viewed through a telescope. The two stars are not necessarily contiouous or bound toọe ther by aravity, but may simply be in the same line of sight.


Binary star - a double star whose two menber stars form their own systen in that they revolve around a comon centre of pravity. Types of binary stars are:
Visual - a binary that will appear as two stars when viewed through a
telescope.
Spectroscodic - a binary whose two stars are so close topether that they
cannot be seen separately through a telescope but are revealed as two stars
through spectroscopic observation.
Eclipsing - a binary whose two stars orbit in such a plane as to eclipse each other.


Variable star - a star that has a cycle of varying brightness. Brightness ranges from a ninimum within each cycle, and variation can be as long as several years or as short as a few hours.


# TELESCOFE 

## CENTRE

## rocus on

## HALLEY" ${ }^{2}$ comet

## CELESTRON IHTERHATIOHAL <br> HEALIE IHSTEUHEHTS

LASEROFTIOS Japanese Refractors and Reflectors

AS WELL AS TELESCOPE ACCESSORIES AND PARTS FOR THE AMATEUR TELESCOPE MAKER

POSTAL ADDRESS:

$$
\begin{aligned}
& \text { POO. BOX } 31149 \\
& \text { BRAAMFONIIIN } \\
& 2017
\end{aligned}
$$


#### Abstract

VISII IHE ZEIGS PLANETARIUM IN YALE ROAD, MII NLTR PARK, JOHANNL:SEUREG (ON WITS CAMPUS)


## ERRATA

## ASTRONOMICAL YEARBOOK FOR 1936

Please substitute the following Comet Rising Times for those given on page 47 of the Yearbook
COMET HALLEY: APPROXIMATE RISING TIMES AND POSITIONS ABOVE HORIZON

| DATE : | $\frac{\text { RISING TIME : }}{04.20 \mathrm{a} . \mathrm{m} .}$ |
| :--- | :--- |
| Feoruary 20tn | $03.15 \mathrm{a} . \mathrm{m}$. |
| March 1 st | $02.20 \mathrm{a} . \mathrm{m}$. |
| Miarch 11 th | $00.50 \mathrm{a} . \mathrm{m}$. |
| March 21 st | 10.50 p.m. |
| March 31 st | Already above <br> horizon by sunset. |
| April 10 th | Visible all night. |

> POSITION ABOVE HIORIZCN
> At 5 a.m. $10^{\circ}$ South of Eas: and $10^{\circ}$ above the horizen

> At 5 a.m. $7^{\circ}$ South of Esst and $22^{\circ}$ above the horizon.
> At 4 a.m. $12^{\circ}$ South of East and $24^{\circ}$ abeve the horizon.
> At 3 a.m. $19^{\circ}$ South of East and $26^{\circ}$ above the horizon.
> At Midnight $35^{\circ}$ South of East and $22^{\circ}$ above the horizon.
> At 8 p.m. $43^{\circ}$ South of East and $21^{\circ}$ above the horizon.
> At 8 p.m. $18^{\circ}$ South of East and $63^{\circ}$ above the horizon.

## PLANETARIUM

P.O. Box 31149 , Braamfontein, 2017, JHB. Tel.: B8X292GX 716-3038 University of the Witwatersrand, Yale Road, Milner Park, Johannesburg, 2001

MARCH, 1986.

TO : FRIENDS OF THE PLANETARIUM

As stated in the February, 1986 issue of the Planetarion Newsletter, we are sending a copy of our "Astronomical Yearbook" for 1986 to all of you who have sent your R15 for 1986. You will receive a third envelope towards the middle of the year containing information on the Halley visit and a final Newsletter at the end of 1986 to guide your night sky viewing in 1987. After that the Planetarium Newsletter will be discontinued.

We are including another leaflet giving the new show times, which will be in force as long as public interest in Halley's Comet lasts. We have had to turn peopte away on many occasions because the auditorivm was packed to capacity.

Two new shows have been introduced. There will be 2 extra English shows; one on Wednesday night at 8 pm and one on sunday at 6 pm .

EXCEPPIONS: No shows on Wednesday 26 March at 8 pm or Sunday 6 April at 6 pm
Enquiries : (011) 716-3199
REVISED SHOW TIMES AND PRICES:
Evenings : Wednesday, Thursday \& Friday 8.00 m
Matinees : Saturday 3.00 pm
sunday $\quad 4.00 \mathrm{pm} \& 6.00 \mathrm{pm}$
Special Afrikaans Progranme
Saturday 8.00pm
Prices : Adults R3.50 Childiren R2.25

```
DON'T MISS EALLEY!!:
```

The first good viewing period for Comet Halley has arrived!
From the 9th to 20th March, 1986 the comet will be in the morning sky uhous 25 degrees about East at $4.00 a m$. If you can get away from street lights, if the sky is clear and there are no big buildings, trees or mountains on your Eastern horizon, you will be able to find it easily with the naked eye. It is even easier to locate through binoculars.

After the 20th March the Moon starts interfering but from about 7 th April to 14 th April viewing conaitions improve again and Comet Halley will be visible for most of the night, rising in the South East around 9.00pm it will be high (70 Deg) above the South after midnight, only setting after sunrise.

First reports on Comet Halley from space craft should be coming in soon. Spacecraft Giotto's exciting encounter when it will fly through Comet Halley's tail just about 500 kilometers behind the nucleus, will be on 13 th March
 Giotto survive the close approach?

We wish you good viewing and clear skies when you look at the Comet.

Do make sure that all the children in your family have a chance to see Halley. They'll remember it until the next time around in 2061.

Mr. Himi hog madefint thin be cirentate I tos consi Comit Members who witit at SAAO.
ISGV
$T$ EVChet on Hh 4, 43 to tottly misdernate.


$\downarrow$ 能 and Etrato: For what laty, long ave throe
 a given foo Feh, plar but pmittedion Jan. (p2) Mus?
I

