ASTRONOMICAL HANDBOOK FOR SOUTHERN AFRICA ## 1976 This booklet is intended both as an introduction to observational astronomy for the interested layman - even if his interest is only a passing one - and as a handbook for the established amateur or professional astronomer. Front Cover: The multiple photographic telescope array belonging to Mr. C. Papadopoulos. ©the Astronomical Society of Southern Africa, Cape Town, 1975 ### CONTENTS | ASTRONOMY IN SOUTHERN AFRICA | 1 | |------------------------------------|----| | DIARY | 4 | | THE SUN | 6 | | THE MOON | 8 | | THE PLANETS | 17 | | THE MOONS OF JUPITER AND SATURN | 28 | | COMETS AND METEORS | 28 | | THE STARS | 31 | | ORDINARY OCCULTATIONS | 35 | | GRAZING OCCULTATIONS | 40 | | TIME SYSTEMS AND TELESCOPE SETTING | 46 | | ASSA OFFICE BEARERS | 48 | | JULIAN DATE | 50 | ## NOTE Unless stated otherwise, all times are SOUTH AFRICAN STANDARD TIME. In order to avoid confusion between a.m. and p.m., the 24-hour clock is used (e.g. 1800 hrs. is 6 p.m. and 2100 hrs. is 9 p.m.). Emphasis is given to phenomena visible in the evening sky - between sunset and midnight. This handbook is produced for the Astronomical Society of Southern Africa. Most of the data it contains have been adapted for Southern Africa from the "Astronomical Ephememeris for 1976" issued jointly by the Nautical Almanac Offices of the Royal Greenwich Observatory, Herstmonceux and the U.S. Naval Observatory, Washington D.C. Additional information has also been supplied direct from the Herstmonceux Office and from the Hydrographer, South African Navy. Thanks are due to Dr A.P. Fairall for his invaluable assistance and advice and to Messrs G and C Larmuth for the preparation of much of the data, and to the Printing Department of the University of Cape Town. All correspondence concerning this booklet should be addressed to the Handbook Editor, Astronomical Society of Southern Africa, 8 Glebe Road, Rondebosch 7700, Cape. Further copies can also be obtained from the same address. Enclose a postal order or cheque (in favour of the Astronomical Society of Southern Africa) for R1 per copy. Although every care has been taken in the compilation of the Handbook, it is distributed and sold on the explicit that neither the Astronomical Society of Southern Africa nor any of its members accepts any responsibility for errors. Dit is met spyt dat ons u meedeel dat as gevolg van beperkte fondse en produksiefasiliteite dit nie moontlik was om hierdie handboek in Afrikaans te laat druk nie. > R.F. HURLY EDITOR ## ASTRONOMY IN SOUTHERN AFRICA As one of the few parts of the Earth having both access to the rich southern skies and a suitable climate, Southern Africa holds a favoured position in astronomy. Consequently it has seen the establishment of a number of professional observatories engaged in research while many individuals have become enthusiastic amateur astronomers. Planetaria and visiting nights at observatories convey to the general public much of what goes on in this field. ## OBSERVATORIES Boyden Observatory, situated at Mazelspoort, just outside Bloemfontein, is operated by an international consortium representing Belgian, Irish and South African interests. Thus many astronomers come from overseas to make use of its observing facilities which include the 1,5 m Rockefelter Reflector and the 0,9 m ADH Baker Schmidt. Its site offers good oberving conditions, without being remote from a large centre. On the other hand, the observatory sites in the hearts of Cape Town and Johannesburg have become unsuitable with the rapid expansion of those cities. The South African Astronomical Observatory a joint venture between the South African Council for Scientific and Industrial Research and the British Science Council-has merged their facilities and moved the larger instruments to a new site near Sutherland in the Karroo. Observing continues at Cape Town which is also the Headquarters of the S. A. A. O. The S. A. A. O. outstation at Hartebeespoort continues to share the site with the Leiden Observatory Southern Station which has a 0,9 m. "light collector" reflector. The 1,9m Radcliffe reflector formerly near Pretoria and the largest telescope in Southern Africa has now been erected in Sutherland. In the field of radio astronomy, the 25 m dish of the Deep Space Tracking Station near Krugersdorp is used for research work when not required for tracking spacecraft, while the Rhodes University Radio Observatory just outside Grahamstown, has a number of arrays for receiving radio emission from the planet Jupiter. In addition to the professional observatories listed above, South Africa and Rhodesia have numerous private observatories, built and operated by amateur astronomers. ## OBSERVATORIES OPEN TO THE PUBLIC Visiting nights at Boyden Observatory are held twice per month usually around the time of first quarter. Intending visitors should contact the Information Office in Hoffman Square, Bloemfontein for tickets (gratis). Numbers are restricted to twenty persons on each visiting night. SAAO Headquarters, Observatory, Cape are open to visitors on the second Saturday each month at 8.00 p.m. No tickets are necessary but parties of more than ten persons should contact the observatory in advance. ## PLANETARIA The major planetarium in South Africa is that situated on the grounds of the University of the Witwatersrand (entrance in Yale Road - alongside MI). It is equipped with a highly complex Zeiss projector and seats over 400 persons. A smaller planetarium, with a Spitz projector and seating approximately 70, is located within the South African Museum, Cape Town. Shows are given each Saturday at 3.00 p.m., each Sunday at 3.30 p.m., and at 11.00 a.m. and 3.30 p.m. on public and school holidays. Further information can be obtained by phoning the museum at 41-2668. ## TEACHING DEPARTMENTS Both the University of the Orange Free State and the University of Cape Town have departments of astronomy - concerned with optical astronomy - while the Physics department of Rhodes University specialises in radio astronomy. The UOFS department is incorporated into Boyden Observatory and is headed by the director, Prof. A.H. Jarrett. Prof. Brian Warner occupies the chair of Astronomy at UCT. His department makes use of the SAAO observing facilities at Sutherland. The Physics Department at Rhodes has its own radio observatory outside Grahamstown. ## THE ASTRONOMICAL SOCIETY OF SOUTHERN AFRICA The Astronomical Society of Southern Africa is a body consisting of both amateur and professional astronomers. Membership is open to all interested persons, regardless of knowledge or experience. In addition to this handbook, the Society issues "The Monthly Notes of the Astronomical Society of Southern Africa" (MNASSA). Members also receive copies of "Sky and Telescope", an excellent and very popular monthly magazine published in the United States. It provides up to date information on both professional and amateur activities, together with news of space research and other related subjects. The Society's annual subscription is R8.00 and there is an entrance fee of R2.50. Information can be obtained from the Honorary Secretary, Astronomical Society of Southern Africa, c/o The South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape. ## LOCAL CENTRES OF THE SOCIETY Autonomous local Centres of the Society hold regular meetings in Cape Town, Bloemfontein, Durban, Johannesburg, Pietermaritzburg and Pretoria. Visitors are very welcome at meetings and may, if they wish, join a Centre, without becoming a full member (i.e. receiving publications for R8 subscription) of the Society. CAPE CENTRE (Cape Town) - Meetings on 2nd Wednesday of the month (except Jan. and Dec.) at the South African Astronomical Observatory at 8.00 p.m. The Centre possesses a small observatory housing the twelve inch Ron Atkins Telescope. There is also an active occultation section. Secretarial address: 4 Chalfont Road, Newlands 7700. Information on meetings also available from telephone (day time) 69-8531 ext. 256 (evenings) 61-5300. TRANSVAAL CENTRE (Johannesburg) - Alternate lecture and observing meetings are held each month. There is a very enthusiastic lunar occultation group which observes grazing occultations within a radius of approximately 250 km of Johannesburg. Mirror making classes are held at suitable intervals and the centre has its own aluminising plant. Secretarial address: P.O. Box 5595, Johannesburg 2001. NATAL CENTRE (Durban) - Monthly meetings are held at the Teacher's Centre. Occultation and telescope making sessions. The Centre has a portable twelve inch reflecting telescope. Secretarial address: Box 2704, Durban 4000. Telephone (evenings) 72-3187. NATAL MIDLANDS CENTRE (Pietermaritzburg) - Meetings usually on the first Thursday of the month either in a private home. Secretarial address: 17 Yalta Rd., Pietermaritzburg 3201. Telephone 54038 FREE STATE CENTRE (Bloemfontein) - The Centre has its own observatory at Brandkop. Meetings on 2nd Thursday of the month at the homes of members. For further information, contact Mr. G.J. Muller, 35 Wilcocks Road, Bloemfontein 9301. Telephone (evenings) 7-3442 or Mr. J. Rhodes, Telephone 7-1981 (day time). Associate members should endeavour to have communications in the hands of the secretary a week before the monthly meetings. PRETORIA CENTRE - The Centre has its own observatory containing a twelve inch reflecting telescope. For information contact Mr. K.J. Sterling, 5 Hekla Road, Valhalla 0137 - Phone 713272. ## **OBSERVING SECTIONS OF THE SOCIETY** These sections exist to coordinate and encourage constructive observing programmes. Mention of the type of observations and equipment involved are made in the appropriate parts of this handbook together with the names and addresses of the directors. | Comets and Meteors | see page 28 | |-----------------------|-------------| | Grazing Occultations | see page 40 | | Nova
Search Section | see page 33 | | Ordinary Occultations | see page 35 | | Variable stars | see page 34 | ## **DIARY 1976** | - | 13h | | | | | |---------|---------|---|-----------------|----------|---| | - | F-13 | Earth at perihelion | 14 ^d | 12^{h} | Spica 00.3 S of Moon | | 7 | 7 | Mercury at greatest elongation E | 15 | 8 | Uranus 1° N of Moon | | | | (19^{0}) | 27 | 22 | Jupiter in conjunction with the Sun | | 8 | 14 | Venus 7º N of Antares | 28 | 4 | Mercury greatest elongation E 210 | | 12 | 6 | Venus 0 ⁰ .4 N of Neptune | 29 | 12 | Annular eclipse of the sun visible | | 13 | 4 | Ceres 0°, 3 N of Moon (mag 7.6) | | | North Africa, Greece, Turkey, | | 14 | 5 | Mars 50 N of Moon | | | Tibet | | 17 | 15 | Saturn 5° N of Moon | | | | | 20 | 13 | Saturn at opposition | | | | | 20 | 12 | Sun overhead at Bulawayo | M. | AY | | | 23 | 9 | Spica occulted | | | 0 | | 24 | 9 | Uranus 20N of Moon | 5 | 6 | Mars 50S of Pollux | | 26 | 23 | Neptune (mag 7,8) occulted | 5 | 16 | Mars 70 N of Moon | | 28 | 10 | Venus 20 S of Moon | 5 | 22 | Saturn 60 N of Moon | | 30 | 12 | Sun overhead at Salisbury | 11 | 16 | Venus 00.2 S of Jupiter | | | | | 11 | 22 | Spica 0°, 3 S of Moon
Mars 1°, 3 N of Saturn | | E.E. | BRU | ADV | 12 | 4 | Mars 17, 3 N of Saturn | | | DICO | VIV I | 27 | 6 | Jupiter 00.8 S of Moon | | 6 | 5 | Jupiter 4°S of Moon | | | | | 10 | 18 | Mars 5 ⁰ N of Moon | | | | | 13 | 21 | Saturn 50N of Moon | 311 | NE | | | 16 | 17 | Mercury greatest elongation W 26 ⁰ | | | 0.4 .0 | | 17 | 0 | Juno occulted | 2 | 8 | Saturn 60 N of Moon | | 19 | 15 | Spica occulted | 3 | 4 | Mars 7º N of Moon | | 20 | 15 | Uranus 10 N of Moon | 8
9 | 7 | Spica 0 ⁰ , 4 S of Moon
Uranus 1 ⁰ N of Moon | | 23 | 6 | Neptune 00, 9 S at Moon | 15 | 11 | Mercury greatest elongation W 23 ^c | | 27 | 16 | Venus 6° S of Moon | 21 | - 8 | Winter solstice | | 28 | 2 | Mercury 7° S of Moon | 22 | 19 | Mercury 3 ⁰ N of Aldebaran | | | | | 24 | 1 | Jupiter 0°.1 S of Moon | | M | ARCE | 1 | 26 | 0 | Mercury 1 ^o N of Moon | | | ***** | | 29 | 20 | Saturn 6 ⁰ N of Moon | | 4 | 22 | Jupiter 3 ^o S of Moon
Mars 6 N of Moon | 29 | 20 | Strain o Wat Moon | | 9 | 21 | Mars 6 N of Moon | | | | | 12 | 5 | Saturn 50 N of Moon | JU | LY | | | 18 | 1 | Spica 0.3 S of Moon | | | | | 18 | 22 | Uranus 1 ⁰ N of Moon | 1 | 16 | Mars 6° N of Moon | | 20 | 14 | Equinox | 3 | 6 | Earth at aphelion | | 29 | 2 | Venus 60 S of Moon | 5 | 13 | Spica 0°. 6 S of Moon | | | | | 5 | 20 | Mars 0°.7 N of Regulus | | AP | PRIL | | 6 | 6 | Uranus 10 N of Moon | | | 10 | | 8 | 23 | Neptune 1° S of Moon | | 1 | 16 | Jupiter 2 ⁰ S of Moon
Mars 7 ⁰ N of Moon | 21 | 19 | Jupiter 0°.5 N of Moon | | 7 | 5
14 | Mars 7 ⁻ N of Moon
Saturn 6 ⁰ N of Moon | 24 | 16 | Mercury 0°.4 N of Venus | | - 0 | | | 29 | 16 | Saturn in conjunction with Sun | | 8
12 | 20 | Mercury 10, 9 N of Jupiter | 30 | 04 | Mars 5 N of Moon | ## **AUGUST** ## **OCTOBER** | 1^{d} | 18 ^h | Spica 0°.8 S of Moon | 7^{d} | 18 ^h | Mercury greatest elongation W 180 | |------------------|-----------------|---|---------|-----------------|--------------------------------------| | 3 | 8 | Mercury 0.º 7N of Regulus
Venus 1.1 N of Regulus | 12 | 3 | Jupiter 10 N of Moon | | 7 | 18 | Venus 1.1 N of Regulus | 18 | 7 | Saturn 6 ⁰ N of Moon | | 18 | 11 | Jupiter 1 ⁰ N of Moon | 19 | 0 | Mars 0 ⁰ .4 S of Uranus | | 24 | 1 | Saturn 6 ^O N of Moon | 23 | 7 | Total eclipse of the sun, seen in | | 26 | 12 | Mercury greatest elongation E 270 | | | Southern Africa as a partial eclipse | | 27 | 2 | Venus 50 N of Moon | 25 | 15 | Venus 40 S of Moon | | 27 | 17 | Mars 40 N of Moon | 28 | 3 | Venus 30 N of Antares | | 29 | 1 | Spica 10 S of Moon | 31 | 8 | Venus 3 ⁰ S of Neptune | | 29 | 19 | Uranus 0.6 N of Moon | | | | | | | | | | | ## **SEPTEMBER** ## NOVEMBER | 100 | | ·· | 7 | 1 | Penumbrial eclipse of the Moon | |-----|----|--|----|----|--------------------------------------| | 6 | 6 | Mercury 5 ^o S of Venus
Venus 0.4 N of Mars | 8 | 3 | Jupiter 1 ⁰ N of Moon | | 11 | 0 | Venus 0.4 N of Mars | 14 | 17 | Saturn 60 N of Moon | | 14 | 21 | Jupiter 1 ⁰ N of Moon | 18 | 10 | Jupiter at opposition | | 20 | 3 | Venus 3 ⁰ N of Spica | 19 | 7 | Spica 1 ⁰ S of Moon | | 20 | 17 | Saturn 60 N of Moon | 20 | 8 | Uranus 0°, 05 S of Moon, Occultation | | 25 | 7 | Mars 2 ⁰ N of Moon | 24 | 15 | Venus 7 ⁰ S of Moon | | 25 | 20 | Venus 0.7 N of Moon | 25 | 3 | Mars in conjunction with the Sun | | 27 | 21 | Mars 3 ⁰ N of Spica | 25 | 17 | Mercury 30 S of Neptune | | 30 | 24 | Venus 0.0 5 S of Uranus | | | | ## **DECEMBER** | 5d | 2^{h} | Jupiter 0 ⁰ .8 North of Moon. | |----|---------|--| | | | Occultation | | 5 | 19 | Neptune in Conjunction with the sun. | | 11 | 23 | Saturn 60 N of Moon | | 16 | 16 | Spica 1 S of Moon | | 20 | 12 | Mercury greatest elongation East 20° | | 22 | 17 | Mercury 6°S of Moon | | 24 | 17 | Venus 7 ⁰ S of Moon | ## **THE SUN 1975** ## BASIC DATA Diameter: 1 392 000 km (109 times Earth diameter) Mass: 1,99 x 10³⁰ kg (330 000 times Earth Mass) Surface Temperature: Approx. 6000°C Temperature at centre: Approx. 10 million C The Sun is our nearest star. It is composed chiefly of hydrogen and is in a gaseous state throughout. So hot and dense is its interior that nuclear reactions occur there - thus producing the energy that is eventually radiated from its surface. At times its surface is disturbed by sunspots (which may persist for some weeks) and flares (short lived). The Earth's orbit around the Sun is not quite circular. In 1976 we will be closest to the Sun on January 4 (perihelion - approx. distance 147 million km.) and furthest from the Sun on July 3 (aphelion - approx. 152 million km.) During the year, the Sun appears to us to make a complete circuit of the sky (i.e. relative to the starry background) as indicated in the diagram. Permanent damage to the eye can be caused by looking directly at the Sun. The diagram below shows how a small telescope (or half a binocular) may be used to project an image of the solar disk onto a piece of white card. It may also be advisable to stop down the telescope aperture so that the eyepiece is not damaged by the intense light passing through it. Tiny black sunspots are generally visible on the otherwise white solar disk - if monitored over a period of a week or so, the rotation of the Sun should be apparent. ## The Sun 1976 TIMES OF SUNRISE AND SUNSET | | | CAPE | TOW | /N | | DUR | BAN | | В | LOEMF | тио | EIN | JO | DHANN | ESBU | IRG | ; | SALISE | URY | | |-------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|-----------------|-----------------|-----------------| | | SU | NRISE | SUI | NSET | SU | NRISE | SU | NSET | SU | NRISE | 803 | NSET | SUI | NRISE | | NSET | SUN | IR ISE | SUN | SET | | Jan 1 | os ^h | 38 ^m | 20 ^h | 01 ^m | 0.1 | 58 ^m | 19 ^h | 01 ^m | 05 ^h | 21 m | 19 ^h | 18 ^m | 05 ^h | 18 ^m | 19 ^h | 04 ^m | osh | 24 ^m | 18 ^h | 35 ^m | | 11 | 05 | 46 | 20 | 02 | 05 | 06 | 19 | 02 | 05 | 29 | 19 | 18 | 05 | 25 | 19 | 05 | 05 | 29 | 18 | 37 | | 21 | 05 | 55 | 19 | 59 | 05 | 14 | 19 | 00 | 05 | 37 | 19 | 17 | 05 | 33 | 19 | 04 | 05 | 37 | 18 | 38 | | Feb 1 | 06 | 07 | 19 | 52 | 05 | 24 | 18 | 55 | 05 | 46 | 19 | 13 | 05 | 42 | 19 | 00 | 05 | 42 | 18 | 36 | | 11 | 06 | 17 | 19 | 44 | 05 | 32 | 18 | 48 | 05 | 54 | 19 | 06 | 05 | 49 | 18 | 55 | 05 | 47 | 18 | 32 | | 21 | 06 | 26 | 19 | 33 | 05 | 41 | 18 | 39 | 06 | 02 | 18 | 57 | 05 | 56 | 18 | 47 | .05 | 52 | 18 | 27 | | Mar 1 | 06 | 33 | 19 | 23 | 05 | 46 | 18 | 30 | 06 | 80 | 18 | 48 | 06 | 00 | 18 | 39 | 05 | 55 | 18 | 21 | | 11 | 06 | 41 | 19 | 11 | 05 | 53 | 18 | 19 | 06 | 13 | 18 | 38 | 06 | 06 | 18 | 29 | 05 | 57 | 18 | 15 | | 21 | 06 | 49 | 18 | 58 | 05 | 59 | 18 | 80 | 06 | 18 | 18 | 27 | 06 | 11 | 18 | 19 | 06 | 00 | 18 | 06 | | Apr 1 | 06 | 58 | 18 | 41 | 06 | 06 | 17 | 53 | 06 | 25 | 18 | 13 | 06 | 17 | 18 | 06 | 06 | 02 | 17 | 57 | | 11 | 07 | 04 | 18 | 30 | 06 | 11 | 17 | 43 | 06 | 30 | 18 | 03 | 06 | 21 | 17 | 56 | 06 | 04 | 17 | 50 | | 21 | 07 | 13 | 18 | 17 | 06 | 17 | 17 | 31 | 06 | 35 | 17 | 52 | 06 | 25 | 17 | 47 | 06 | 07 | 17 | 43 | | May 1 | 07 | 20 | 18 | 05 | 06 | 24 | 17 | 22 | 06 | 42 | 17 | 44 | 06 | 31 | 17 | 38 | 06 | 10 | 17 | 37 | | 11 | 07 | 28 | 17 | 57 | 06 | 31 | 17 | 14 | 06 | 49 | 17 | 36 | 06 | 37 | 17 | 31 | 06 | 13 | 17 | 32 | | 21 | 07 | 34 | 17 | 50 | 96 | 36 | 17 | 08 | 06 | 54 | 17 | 30 | 06 | 41 | 17 | 26 | 06 | 16 | 17 | 29 | | Jun 1 | 07 | 43 | 17 | 45 | 06 | 43 | 17 | 04 | 07 | 01 | 17 | 27 | 06 | 47 | 17 | 23 | 06 | 20 | 17 | 28 | | 11 | 07 | 48 | 17 | 44 | 06 | 48 | 17 | 03 | 07 | 05 | 17 | 26 | 06 | 52 | 17 | 22 | 06 | 23 | 17 | 27 | | 21
Jul 1 | 07 | 51 | 17 | 44 | 06 | 51 | 17 | 04 | 07 | 08 | 17 | 27 | 06
06 | 55
57 | 17 | 24 | 06 | 26 | 17 | 29 | | Jui 1 | 07 | 53 | 17 | 48 | 06 | 53 | 17 | 07 | 07 | 10 | 17 | 30 | 06 | 55 | 17 | 27
30 | 06 | 27 | 17 | 32 | | 21 | 07 | 51 | 17 | 52 | 06 | 51 | 17 | 11 | 07 | 80 | 17 | 34 | | 53 | 17 | | 06 | 27 | 17 | 35 | | Aug 1 | 07 | 47
39 | 17 | 58
06 | 06 | 48 | 17 | 16 | 07 | 05 | 17 | 39 | 06
06 | 48 | 17 | 35 | 06 | 26 | 17 | 40 | | 7.ug 1 | 07
07 | 30 | 18
18 | 13 | 06 | 42
34 | 17 | 22
29 | 07 | 00 | 17 | 45 | 06 | 41 | 17
17 | 41
46 | 06 | 23
18 | 17 | 42 | | 21 | 07 | 19 | 18 | 20 | 06 | | 17 | | 06 | 53 | 17 | 51 | 06 | 32 | 17 | 50 | 06 | | 17
17 | 46 | | Sep 1 | 07 | 06 | 18 | 27 | 06
06 | 24
12 |
17
17 | 35
40 | 06 | 42 | 17 | 55 | 06 | 21 | 17 | 54 | 06
06 | 11
04 | 17 | 48
49 | | лер 1
11 | 06 | 52 | 18 | 34 | 06 | 00 | 17 | 46 | 06
06 | 31
19 | 18 | 01 | 06 | 11 | 17 | 59 | 05 | 55 | 17 | 51 | | 21 | 06 | 38 | 18 | 41 | 05 | 48 | 17 | 51 | 06 | 07 | 18
18 | 06 | 05 | 59 | 18 | 03 | 05 | 46 | 17 | 52 | | Oct 1 | 06 | 25 | 18 | 48 | 05 | 37 | 17 | 57 | 05 | 57 | 18 | 10
16 | 05 | 50 | 18 | 08 | 05 | 39 | 17 | 54 | | 11 | 06 | 12 | 18 | 55 | 05 | 25 | 18 | 03 | 05 | 45 | 18 | 22 | 05 | 39 | 18 | 12 | 05 | 30 | 17 | 57 | | 21 | 05 | 58 | 19 | 04 | 05 | 12 | 18 | 09 | 05 | 33 | 18 | 27 | 05 | 27 | 18 | 17 | 05 | 23 | 17 | 59 | | Nov 1 | 05 | 16 | 19 | 13 | 05 | 02 | 18 | 17 | 05 | 24 | 18 | 35 | 05 | 19 | 18 | 24 | 05 | 16 | 18 | 03 | | 11 | 05 | 36 | 19 | 23 | 04 | 55 | 18 | 26 | 05 | 17 | 18 | 44 | 05 | 13 | 18 | 32 | 05 | 14 | 18 | 08 | | 21 | 05 | 31 | 19 | 33 | 04 | 49 | 18 | 34 | 05 | 12 | 18 | 52 | 05 | 08 | 18 | 39 | 05 | 11 | 18 | 13 | | Dec 1 | 05 | 29 | 19 | 43 | 04 | 48 | 18 | 42 | 05 | 11 | 19 | 00 | 05 | 07 | 18 | 46 | 05 | 12 | 18 | 19 | | 11 | 05 | 28 | 19 | 50 | 04 | 48 | 18 | 50 | 05 | 11 | 19 | 07 | 05 | 08 | 18 | 53 | 05 | 14 | 18 | 25 | | 21 | 05 | 32 | 19 | 57 | 04 | 52 | 18 | 57 | 05 | 15 | 19 | 14 | 05 | 12 | 19 | 00 | 05 | 18 | 18 | 31 | | | | | | | | | | | | | | | | | | | - 5 | | | | ## SOLAR ECLIPSES Annular eclipse of the Sun, April 29. This eclipse is not visible from Southern Africa. Total eclipse of the Sun, October 23. From Southern Africa this eclipse will be seen as a partial eclipse in the early morning. Predictions are as follows: | | | Cape T | own | ; | Johannes | burg | | Salisbu | <u>ry</u> | | |--------------------------------|-----|--------------------|--------|----------------|--------------------|---------------------|---------|--------------------|---------------------|--| | Eclipse begins (P.A.) | 5 h | 37 ^m 05 | (341°) | 5 ^h | 14 ^m 73 | (325 ⁰) | 4^{h} | 58 ^m 98 | (311 ⁰) | | | Maximum eclipse
(magnitude) | 6 | 08,17 | (19%) | 5 | 57,49 | (41%) | 5 | 47,77 | (63%) | | | Eclipse ends (P. A.) | 6 | 40,59 | (56°) | 6 | 43,28 | (74°) | 6 | 40,87 | (88°) | | The position angle (P.A.) of the point of contact is measured eastwards from the north point of the Sun. The magnitude is the percentage of the Sun's Diameter obscured. ## THE MOON 1976 ## BASIC DATA Diameter: 3 480 km (0,27 of Earth) Mass: 7,35 x 10^{22} kg (1/81 of Earth) Surface Gravity: 0,16 of Earth Average distance from Earth: 384 000 km ## PHASES AND VISIBILITY ## THE MOON'S ORBIT Dates of Apogee, when the Moon is furthest from the Earth (approx. 407 000 km) and of Perigee, when the Moon is closest to the Earth (approx. 357 000 km) are given below. | | | Apogee | | | | | Perigee | | | |-----|----|--------|-----|----|-----|----|---------|-----|----| | Jan | 8 | May 25 | Oct | 10 | Jan | 20 | Jun 9 | Sep | 25 | | Feb | 5 | Jun 21 | Nov | 6 | Feb | 17 | Jul 7 | Oct | 23 | | Mar | 4 | Jul 19 | Dec | 3 | Mar | 16 | Aug 1 | Nov | 21 | | Mar | 31 | Aug 16 | Dec | 31 | Apr | 14 | Aug 28 | Dec | 19 | | Apr | 27 | Sep 13 | | | May | 12 | | | | As a result of its motion around the Earth, the Moon appears to make a complete circuit of the heavens in just under a month. It occasionally passes in front of bright stars (details given in Occultation section - page 43) and close to visible planets (details given in Diary pages 4 and 5). ## TIMES OF MOONRISE AND MOONSET Times for Bloemfontein, Cape Town, Durban, Johannesburg and Port Elizabeth can be obtained from the tables on pages 11 to 16. ## LUNAR ECLIPSES Partial eclipse of the Moon, May 13. Details of this eclipse are as follows: | 4 | - | -1 | 1. | and a | |----------------------|-----|-----|-----|---| | Moon enters penumbra | May | 13" | 19" | 46 ^m ,6 | | Moon enter umbra | | 13 | 21 | 15, 7 (at 1680 East of North point) | | Middle of eclipse | | 13 | | 54, 3 (12% of Moon's diameter obscured) | | Moon leaves umbra | | 13 | 22 | 32, 9 (at 150° West of North point) | | Moon leaves penumbra | | 14 | 00 | 02,0 | Penumbral eclipse of the Moon, November 6-7. Details are as follows: | Moon enters penumbra | November 6 ^d | 22 ^h | 45, 6 (at 34° East of North point) | |----------------------|-------------------------|-----------------|--| | Middle of eclipse | | | 01,1 (86% of Moon's diameter obscured) | | Moon leaves penumbra | 7 | 03 | 16,5 (at 57° West of North point) | ## THE SURFACE OF THE MOON In common with the inner planets of our solar system, the Moon's surface suffered bombardment by numerous minor bodies during the period 4,5 to 3,0 billion years ago. This has produced the heavily cratered topography now visible. Some particularly large impacts caused large circular depressions, which were flooded by molten lava from the Moon's interior. These are the maria basins which appear smoother and darker then the rest of the surface (the latin words mare and maria come from older times when they were mistaken for seas). The maria surfaces, being younger have fewer large craters, but the entire surface is peppered with tiny craters produced by tiny bodies which have also served to plough up the ground thus forming the regolith - a layer of loose material a metre or so deep. ## LIBRATIONS Jan 5 Feb 1/28 Mar 26 Apr 22 May 19 Jun 16 Jul 13 Aug 9 Sep 5 Oct 2/30 Nov 26 Dec 23 Jan 19 Feb 15 Mar 13 Apr 10 May 7 Jun 3/30 Jul 27 Aug 24 Sep 20 Oct 17 Nov 13 Dec 11 Dates of Maximum Exposure of Indicated Limbs Jan 15 Feb 12 Mar 11 Apr 8 May 6 Jun 2/29 Jul 26 Aug 22 Sep 19 Oct 17 Nov 15 Dec 13 Jan 2/29 Feb 24 Mar 23 Apr 20 May 19 Jun 16 Jul 14 Aug 10 Sep 5 Oct 2/30 Nov 27 Dec 25 ## JOHANNESBURG - TIMES OF | | | Jan | | | | Leb | 0 | | | 2 | 4 | 1 | |------------|----------------|-----------|-----|-----------|-------|----------------|-----------|-----------|----------------|-----|-----------|------| | - | RISE
05h 04 | SE
O4m | | ST
56m | R 106 | RISE
6h 40m | SE
19h | $^{ m T}$ | RISE
06h 19 | - 8 | SE
18h | T 45 | | N | 90 | 03 | | 42 | 0.7 | | 20 | 10 | 07 | | 19 | 18 | | co | 07 | 00 | 20 | 24 | 90 | 25 | 20 | 44 | 08 | | 1.9 | 52 | | 4 | 07 | 56 | 2, | 02 | 60 | | 21 | 00 | 08 | | 20 | 27 | | S | 80 | 20 | 21 | 80 | 10 | 20 | 21 | 2 | 60 | | 21 | 04 | | 9 | 60 | 43 | 22 | 12 | 10 | 58 | 22 | 27 | 10 | 34 | 21 | 4 | | c - | 10 | 63 | 22 | 44 | 11 | 50 | 23 | 90 | 11 | 56 | 22 | 28 | | 00 | 11 | 25 | 23 | 18 | 12 | 42 | 23 | 47 | 12 | 18 | 23 | 15 | | 6 | 12 | 15 | 23 | 52 | 13 | 35 | | | 13 | 10 | | | | 10 | 13 | 0.7 | | | 14 | 29 | 00 | 34 | 14 | 000 | 00 | 07 | | 11 | 14 | 00 | 00 | 30 | 15 | 21 | 01 | 25 | 14 | 49 | 01 | 03 | | 12 | 14 | 53 | 0.1 | 10 | 16 | 13 | 02 | 19 | 15 | 36 | 02 | 02 | | 13 | 15 | 80 | 01 | 55 | 17 | 01 | 03 | 19 | | 21 | 03 | 04 | | 4 | 16 | 42 | 02 | 44 | 17 | 49 | 10 | 21 | 17 | 90 | 04 | 07 | | 15 | 17 | 35 | 03 | 38 | 18 | 33 | 02 | 25 | | 49 | 05 | 13 | | 16 | 18 | 26 | 04 | 37 | 19 | 17 | 90 | 30 | 18 | 33 | 90 | 19 | | 17 | 19 | 14 | 05 | 38 | 20 | 00 | 07 | 36 | 19 | 20 | 0.2 | 26 | | 20 | 19 | 80 | 90 | 41 | 20 | 43 | 08 | 41 | 20 | 20 | 80 | 33 | | 19 | 20 | 42 | 07 | 44 | 21 | 28 | 60 | 46 | 20 | 58 | 60 | 40 | | 20 | 21 | 23 | 80 | 48 | 22 | 59 | 10 | 20 | 21 | 51 | 10 | 4 | | 21 | 22 | 04 | 60 | 51 | 23 | 05 | 11 | 53 | 22 | 46 | 11 | 44 | | 22 | 22 | 46 | 10 | 54 | 23 | 22 | 12 | 55 | 23 | 43 | 12 | 41 | | 23 | 23 | 30 | 11 | 56 | | | 13 | 52 | | | 13 | 32 | | 24 | | | 12 | 59 | 00 | 52 | 14 | 45 | 00 | 39 | 14 | 17 | | 25 | 00 | 17 | 14 | 00 | 0.1 | 48 | 15 | 34 | 0.1 | 33 | 14 | 9 | | | | | | | | | | | | | | | | 26 | 01 | 90 | 14 | 29 | 05 | 43 | 16 | 18 | 05 | 29 | 2 | 36 | | 27 | 05 | 00 | 15 | 26 | 03 | 39 | 16 | 28 | 03 | 23 | 16 | 12 | | 28 | 02 | 55 | 16 | 48 | 04 | 33 | 17 | 35 | 04 | 14 | 16 | 46 | | 29 | 03 | 53 | 1. | 36 | 05 | 56 | 18 | 11 | 0.5 | 02 | 17 | 19 | | 30 | 04 | 49 | 100 | 19 | | | | | 02 | 99 | 17 | 53 | | | | | | | | | | | | | | | 18 28 06 47 31 05 45 | | T | 33 | 32 | 31 | | 32 | 33 | 37 | 41 | 47 | 52 | 53 | 20 | 4 | 26 | 08 | 46 | 21 | 55 | 29 | 04 | 40 | 20 | 02 | 49 | 38 | 32 | 30
61 | 27 | 56 | |---------|----------------|------|----|----|-----|----|----|-----|-----|----|----|----|-----|----|----|----|----|----|----|------------|----|----|-----|----|----|----|----|----------|----|-----| | 9 | SET
20h 35 | 21 | 22 | 23 | | 00 | 01 | 02 | 03 | 04 | 05 | 90 | 07 | 80 | 60 | 10 | 10 | 11 | 11 | 12 | 13 | 13 | 14 | 15 | 15 | 15 | 17 | 18 | 19 | 20 | | Turne | SE. | 90 | 50 | 32 | 11 | 52 | 34 | 18 | 10 | 00 | 57 | 22 | 58 | 59 | 57 | 53 | 47 | 39 | | 31 | 22 | 13 | 05 | 24 | 49 | 41 | 32 | 21 | 20 | 51 | | | RISE
ooh 24 | 10 | 10 | 11 | 12 | 12 | 13 | 14 | 15 | 16 | | 17 | | | 20 | 21 | 22 | 23 | | 00 | 01 | 02 | 03 | 03 | 75 | 05 | 90 | 0.7 | 08 | 08 | | • | T | | 49 | 44 | 40 | 30 | | 38 | 39 | 42 | 46 | 53 | 0.1 | 20 | 11 | 10 | 03 | 51 | | 12 | 20 | 22 | 22 | 29 | 02 | 42 | 22 | 10 | 54 | 45 | | 2017 | SE | 13 | 20 | 21 | 22 | 23 | | 00 | 0.1 | 02 | 03 | 04 | 90 | 07 | 08 | 60 | 10 | 10 | 11 | 12 | 12 | 13 | 13 | 14 | 15 | 15 | 16 | 17 | 17 | 00 | | | SE SE | 00 | 20 | 39 | 24 | 60 | 51 | 22 | 13 | 22 | 40 | 28 | 21 | 16 | 15 | 16 | 16 | 14 | 10 | | 7 | 26 | 47 | 38 | 28 | 20 | 11 | 04 | 99 | 47 | | | RISE | 60 | 60 | 10 | 11 | 12 | 12 | | 14 | 4 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 00 | 00 | 0.1 | 02 | 03 | 04 | 02 | 90 | 90 | 20 | | | I outm | 44 | 25 | 12 | 0.1 | 53 | 49 | | 48 | 49 | 51 | 99 | 01 | 60 | 17 | 24 | 59 | 29 | 24 | 13 | 57 | 36 | 13 | 47 | 21 | 55 | 29 | 05 | 44 | 2.4 | | | SE | 19 | 20 | 21 | 22 | 22 | 23 | | 00 | 01 | 02 | 03 | 05 | 90 | 20 | 08 | 60 | 10 | 11 | 0-1
(-1 | 12 | 13 | 14 | 14 | 15 | 15 | 16 | 17 | 11 | ď | | TEINIOO | Apr
E | 29 0 | 21 | 13 | 04 | 53 | 42 | 28 | 12 | | 90 | 21 | 90 | 53 | 43 | 80 | 34 | 32 | 31 | 29 | | 24 | 18 | 11 | 02 | 52 | 43 | 34 | 25 | 7 | | | RISE | 08 | 60 | 10 | 1 | = |
12 | 133 | 14 | 14 | 15 | | 1- | 17 | 18 | 19 | 20 | 21 | 22 | 61 | | 00 | 01 | 02 | 03 | 03 | 04 | 05 | 90 | 5 | | 5 | ## TIMES JOHANNESBURG | | | July | | | | Aug | 54 | | | Sept | ot | | |-----|-----|------|-----|------|-----|-----|----|-----------------|-----|--------------|------|----------| | | PIE | SE | SE | T | ~~ | SE | SE | 3.T | RI | ISE
h 31m | H-40 | T | | 7 6 | 10 | 13 | 22 | A CA | 11 | 05 | 1 | 3 | 12 | 28 | 01 | 24 | | | 10 | EQ. | 23 | 27 | 11 | 49 | | 27 | 13 | 56 | 0.5 | 18 | | | 11 | 3 | | | 12 | 40 | 01 | 30 | 14 | 23 | 03 | 80 | | | 12 | - | 00 | 58 | 13 | 35 | 05 | 31 | 15 | 20 | 03 | 54 | | 9 | | 0.5 | 0.1 | 63 | 14 | 32 | 03 | 29 | 16 | 16 | 04 | 33 | | (~ | 13 | 52 | 02 | 35 | 15 | 31 | 04 | 22 | | 11 | 00 | 14 | | 30 | 14 | 45 | 03 | 38 | 16 | 30 | 05 | 11 | 18 | 04 | 90 | 51 | | O | 15 | 42 | 04 | 39 | 17 | 28 | 02 | 99 | | 96 | 90 | 56 | | 10 | 16 | 42 | 02 | 37 | 18 | 24 | 90 | 38 | | 48 | 0.3 | 01 | | 11 | 17 | 75 | 90 | 30 | 19 | 19 | 07 | 16 | 20 | 39 | 0.7 | 36 | | 12 | 18 | 42 | 0.7 | 19 | 20 | 12 | 07 | 52 | 21 | 31 | 80 | 13 | | 13 | 19 | 40 | 80 | 0.5 | 21 | 04 | 90 | 27 | 22 | 22 | 90 | 51 | | 14 | 20 | 36 | 08 | 41 | 21 | 99 | 60 | 0.2 | 23 | 13 | 60 | 31 | | 15 | 21 | 29 | 60 | 19 | 22 | 47 | 60 | 37 | | | 10 | 15 | | 16 | 22 | | 0.9 | 70 | 23 | 38 | 10 | 14 | 00 | 03 | | 05 | | 17 | 23 | 13 | 10 | 28 | | | 10 | 53 | 00 | 52 | | 53 | | 18 | | | 11 | 03 | 00 | 30 | 11 | 35 | 01 | 41 | 12 | 00 | | 19 | 00 | 04 | 11 | 39 | 0.1 | 21 | 12 | 22 | 05 | 27 | | 77 | | | 00 | 56 | 12 | 17 | 02 | 12 | | 13 | 03 | = 3 | | F | | 21 | 0.1 | 47 | 12 | 57 | 03 | 02 | 14 | 10 | 03 | 56 | 15 | 45 | | 22 | 02 | 39 | 13 | 42 | 03 | 51 | 15 | 0.1 | 04 | 39 | 16 | 47 | | 23 | 03 | 31 | 77 | | 04 | 38 | 16 | 00 | 05 | 23 | 17 | 52 | | 24 | 04 | 23 | 15 | 22 | 0.5 | 23 | 17 | 02 | 90 | 90 | 18 | 30 | | 25 | 05 | 13 | 16 | 18 | 90 | 90 | 90 | 1 .0 | 90 | 52 | 20 | 0.4 | | 26 | 90 | 0.1 | 17 | | 90 | 6+ | | 10 | 0.7 | 40 | 21 | 11 | | 23 | 90 | 46 | 18 | | 07 | 31 | | 11 | 90 | 31 | 22 | 15 | | 80 | 0.1 | 30 | 19 | | 08 | 15 | | 16 | 60 | 26 | 53 | 17 | | 29 | 08 | 12 | 20 | 18 | 60 | 00 | 22 | 20 | 10 | 22 | | | | 30 | 80 | 53 | 21 | | 60 | 47 | | 23 | 11 | 21 | 00 | 77 | | | | | | | | | | | | | | | 22 22 31 | | 38m | 13 | 20 | 28 | 80 | 52 | 40 | 29 | 22 | 16 | 11 | 80 | 04 | 03 | 03 | 90 | 10 | 15 | 21 | 24 | 22 | 16 | 03 | 1.4 | 26 | 0.3 | 38 | | 13 | 49 | 36 | 70 | |-----|--------|----|----|----|----|----|-----|----|----|-----|-----|-----|-----|----|----|----------|----|-----|----|----|----|----|-----|-----|-----|----------|----|-----|----|----|----|----| | 0 | Ol P | 02 | 02 | 03 | 50 | 04 | 05 | 90 | 20 | 80 | 60 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 21 | 22 | 23 | 23 | | 00 | 00 | 5 | 7. | | Dec | E 2 | | 20 | 28 | 20 | 40 | 29 | 17 | 02 | 44 | 25 | 05 | 44 | | 24 | 05 | 20 | 38 | 32 | 30 | 32 | 35 | 38 | 38 | 36 | 32 | 56 | 100 | 10 | 01 | G | 10 | | | RISE | 15 | 16 | 16 | 17 | 18 | 19 | 20 | 21 | 21 | 22 | 23 | 23 | | 00 | 0.1 | 01 | 02 | 03 | 04 | 05 | 90 | 0.7 | 80 | 60 | 10 | 11 | 12 | 13 | 14 | 7 | # | | | .T. | 28 | 03 | 37 | 13 | 50 | 29 | 10 | 55 | 43 | 33 | 26 | 20 | 16 | 14 | 53
13 | 14 | 180 | 23 | 31 | 38 | 44 | 44 | 39 | 28 | 12 | 52 | | 29 | 03 | | | | ٨ | SE | 02 | 03 | 03 | ₹0 | 10 | 05 | 90 | 90 | 0.2 | 80 | 60 | 10 | 11 | 12 | 13 | 4 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 23 | | 00 | 01 | | | | Nov | SE 55m | 1- | 38 | 30 | 21 | 12 | 03 | 54 | 43 | 31 | 80 | 0.2 | 44 | | 25 | 05 | 46 | 28 | 12 | 00 | 53 | 51 | 51 | 53 | 99 | 99 | 54 | 49 | 45 | 34 | | | | | PISE | 14 | 15 | 16 | 13 | 90 | 19 | | 20 | 21 | 22 | 23 | 23 | | 00 | 0.1 | 01 | 02 | 03 | 04 | 04 | 05 | 90 | 0.7 | 08 | 60 | 10 | 11 | 12 | 13 | | | | | Т. | 53 | 35 | 14 | 52 | 27 | 0.1 | 31 | 12 | 20 | 30 | 12 | 800 | 46 | 38 | 32 | 28 | 27 | 27 | 30 | 34 | 41 | 87 | 99 | 0.5 | 03 | 59 | 49 | | 35 | 4 | 10 | | 4 | SE | 01 | 03 | 03 | 03 | 04 | 05 | 05 | 90 | 90 | 07 | 80 | 08 | 60 | 10 | 11 | 12 | 13 | 7 | 15 | 16 | 17 | 18 | 19 | 21 | 61
61 | 22 | 23 | | 00 | 3 | 10 | | Oct | E H | 16 | 11 | 90 | 59 | 51 | 43 | 34 | 25 | 17 | 0.7 | 30 | 47 | 50 | | 20 | 05 | 27 | 30 | 12 | 54 | 39 | 26 | 17 | 12 | 10 | 10 | 10 | 60 | 90 | - | 10 | | | RISE | 13 | 14 | 15 | 15 | | 17 | | 19 | 20 | 21 | 21 | 22 | 23 | | 00 | 01 | 01 | 05 | 03 | 03 | 70 | 05 | 90 | 20 | 80 | 60 | 10 | 11 | 12 | C | 2 | MOONRISE AND MOONSET ## CAPE TOWN - TIMES OF MOONRISE AND MOONSET FOR PORT ELIZABETH SUBTRACT 28 MINUTES | E | SET | H | 21 02 | 2 02 | 3 03 | | 90 00 | | | | 04 30 | 5 38 | 06 44 | - | - | • | | 10 53 | | | | _ | 3 36 | | | 15 27 | | | | | | 20 56 | | |-------------|------|---|---------|------|------|----------|-------|-------|-------|-------|---------|-------|-------|----|-------|----|-------|-------|----|-------|---------|-------|-------|----|-----|-------|-------|-----|----|-------|-----|---------|-------| | JUNE | 503 | M | 10 15 2 | 57 | 37 | | 21 | 29 | 07 | 48 | 15 35 0 | 25 | | 21 | 23 | 56 | 56 | 22 25 | 23 | | 00 17 1 | 12 | 90 | 59 | 54 | | 41 | 34 | 24 | 13 | 26 | 09 38 2 | | | A | SE | H | 19 33 | | | | | | _ | | 02 15 | | | | | | 60 60 | 10 03 | | | | | | | | 15 02 | | | | | | 19 09 | 20 04 | | MAY | RISE | H | 09 01 | | | | | | | | 14 52 | | 16 12 | | - | - | 19 39 | 20 40 | | 10 | 10 | | | | | 03 20 | | | _ | | | 08 40 | 09 29 | | 2 | SET | H | 19 33 | | | | - | 23 18 | | | 01 16 | 02 19 | | | 05 43 | | 08 05 | 09 15 | | | | 13 04 | 13 45 | | | 15 28 | | | _ | | | 18 50 | | | APR | RISE | H | 08 25 | | | | | _ | | | 14 59 | 15 39 | | | | | 19 11 | 20 03 | _ | 21 56 | | | | _ | | 02 45 | | | | | | 08 07 | | | 22 | SET | H | 19 24 | | | | | | | 23 39 | | 00 31 | | | | | 05 49 | | | | | 11 36 | | | | 15 07 | | * | | | | 18 27 | 18 59 | | MA | RISE | H | 06 55 | | | | | | | | 14 03 | | | | | | 18 28 | _ | | | | 22 15 | 23 10 | | | 01 05 | | | | | | 06 38 | 07 31 | | r
r
r | SET | H | 20 20 | | | | | | 23 32 | | | 00 57 | | | - | | 92 50 | | | | | 11 39 | | | | 15 38 | 16 25 | | | 18 20 | | | | | <u> </u> | RISE | E | | | | | 10 51 | | | | | 15 22 | | _ | _ | | 19 17 | | - | | _ | 22 42 | 23 30 | | | 01 15 | | | | 05 04 | | | | | 9 | SET | H | 19 47 | | | | | | | 24 52 | | 00 23 | | | | _ | 04 02 | | _ | | | 09 24 | | | | 13 48 | 14 52 | | | | | 19 08 | 19 45 | | NAT. | RISE | × | 05 28 | | | | 09 23 | df. | + 4 | - | 1 | 13 55 | 4 | 15 | 16 | 17 | 18 28 | 19 | 20 | 2 | 21 | 22 02 | 22 | 6 | , K | | 00 | 0.1 | 02 |) C | 000 | 05 16 | 06 15 | | | | | Ψ- | N | M | 4 | . תו | 9 | 1 | - 00 | σ | 0 | 4.4 | 12 | 13 | 4 | 10 | 16 | 17 | 00 | 0 | 8 | 2 | 22 | 1 0 | 24 | 25 | 26 | 27 | ά | 0 0 | 300 | 3 | # CAPE TOWN — TIMES OF MOONRISE AND MOONSET FOR PORT ELIZABETH SUBTRACT 28 MINUTES | o. | SET | | 02 13 | | | | | | 06 03 | | | | | 09 41 | | - | | _ | 14 51 | | | | | | 20 14 | | | | | | | 00 14 | | | 01 55 | | |------|------|-----|-------------|-------|-------|-------|-------|-----|---|----------|-----|-----|----|-------|-------|-----|-------|--------|----------|-----|---|-----------------|----|---|-------|-------|----|----|---------|-------|-------|-------|----|-------|---------|--| | DE | RISE | E | 15 08 | 16 01 | 16 55 | 17 48 | 18 41 | | 20,21 | | | | | 23 11 | | | 00 24 | | 01 39 | | | | | | 05 56 | | | | | | | 13 00 | | | 15 41 | | | NOV. | | E E | 02 35 | | | | | | 05 56 | | | | | 08 58 | | | | | | | | 17.09 | | | 19 29 | 20 36 | | | | 23 58 | | 00 35 | | | | | | Z | rn. | H | 14 31 | | | | | | 19 54 | | | | | 23 09 | | | | 01 09 | | | | 03 44 | | | 05 20 | | | | | | | 12 23 | | | | | | OCT. | Si | E | 01 57 | 02 | 03 | 03 | 04 | 0.5 | 05 37 | 900 | 2 4 | 1 0 | ò | 0.7 | 08 | 60 | 10 | 11 03 | | | | 150
00
00 | | | 17 16 | | | | 21 54 | | 23 50 | | | 01 22 | 05 00 | | | ð | [H] | | 12 45 | | | | | | 4
4
7
8 | | | | _ | 21 58 | 22 49 | | | 00 27 | | | | 200 | | | | | | | 07 38 | | | 10 36 | | | 13 34 | | | PT. | SET | W H | 56 01 17 | 02 16 | 03 10 | 03 59 | 04 42 | | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | | | | | | | | | 10 40 | | | | 14 44 | | | | | | | 20 51 | | 23 07 | | | 90 0 | | | | SE | RISE | H | 11 56 | 12 52 | 13 50 | 14 50 | 15 49 | | 17 45 | | | | | 21 25 | 22 19 | | | 0.0 04 | | | | 24 40 | | | | 05 21 | _ | | 07 23 | | | 09 5 | | | | | | AUG. | SET | H | | 00 11 | | | | | - t - C | | | | | | | _ | | 10 09 | | | | 200 | | | | | | | 18 39 | | | 22 01 | | | 00 14 | | | A | RISE | H | 10 49 | 11 31 | | | | | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | 23 34 | | | | 7 7 00 | | | | | | | 06 50 | | | | | 10 15 | 11 04 | | | LY | SET | НМ | 10 16 22 00 | 23 03 | | 90 00 | 01 12 | | 0 | | | | | | | | | 10 00 | | | | 000 | | | | | | | 16 43 | | | | | 22 00 | 23 05 | | | UL | RISE | H | | | | | | 7 | 200 | 1 | 5 | 9 | 7 | ¢ | g | 000 | 2 0 | 22 07 | (/
 K | 1 0 | Ú | | 00 | 0 | 0.5 | 0.3 | 40 | | 5 06 05 | 90 | 0.7 | 000 | α | 09 32 | 1 10 10 | | | | | | - | CV | lr. | . 4 | п, | | 0 6 | - 1 | الد | ٠, | 7- | 7 | 1 | 7 | | ĻΨ | 4 | - 4 | | 20 0 | - | N | Ċ | , i | (| ١٨ | 25 | 7 | Č | 1 2 | ۱۲ | 36 | 3, | | ## DURBAN — TIMES OF MOONRISE AND MOONSET FOR BLOEMFONTEIN ADD 19 MINUTES | TATE | JONE | | H | 20 16 | 2 | 22 | 23 | | 81 00 | | | | | | | 07 42 | | | | | | 11 09 | | | 12 48 | | | | | 16 19 | | 18 09 | | | | | |------|------|------|----|-------|-------|-------|-------|-------|-------|----|-------|-------|-------|-------|----|-------|----|-------|---|-----|-------|-------|----|-------|-------|-------|-------|-------|-------|-------|----|-------|----|-------|-------|--| | | 16 | RISE | H | 91 60 | | | | | 12 38 | | | | | | | 18 39 | - | | - | | 26 22 | | | 8 | 01 10 | | | | | 05 33 | | | | | | | | | AX | SET | 軍 |
18 50 | 19 38 | 20 30 | 21 24 | 22 21 | 23 21 | | | 01 24 | | | | 05 51 | | | | | | 10 42 | | | | | 13 41 | | | | | 16 47 | | | 19 20 | | | ; | N. | | HH | 08 01 | | 09 42 | | | 11 59 | | | 14 00 | | | | 17 02 | | | | | | 21 56 | | | | | 01 33 | | | | | 05 56 | | | 08 28 | | | 9 | APR. | | H | 18 47 | 19 26 | 20 07 | 20 52 | 21 41 | 22 34 | | | 00 30 | | | | 04 48 | | | | | | 10 21 | | | | | 14 02 | | _ | | | 16 48 | | | | | | • | AF | 回 | H | 27 | 20 | 12 | 05 | 96 | | | | 14 02 | | | | 16 50 | | | | | | 21 12 | - | | | | 01 01 | | | | | 05 23 | | _ | | | | 1 | | | | 18 32 | | | | | 21 26 | | | 23 48 | | | | 02 46 | | 04 57 | | | | 08 22 | | 10 35 | | | 13 23 | | 14 49 | | | 16 33 | | | 18 12 | | | | M | RISE | H | | | 07 48 | | 09 32 | | | | 13 02 | | | | 16 11 | | | | | | 19 49 | | | | 23 23 | | 00 20 | | | | 03 59 | | | 06 35 | | | | FEB. | SET | | 19 25 | | | | | | - | 23 29 | | 00 14 | | | 02 59 | _ | _ | | | - | 08 28 | | _ | ~ | - | 13 44 | | | _ | | 17 25 | _ | | | | | | G, | RISE | H | 06 23 | | | | 09 55 | | | | 13 27 | | 15 13 | | 16 53 | | | | | | 20 27 | | | _ | 23 38 | | | 01 28 | | | 04 16 | | | | | | | Z | SET | E | 00 | | | | 21 26 | | | | 23 36 | | | | | | 03 18 | | | | 06 23 | | | | | | | 13 51 | | | 16 40 | | | 18 49 | | | | JAN. | RISE | н | | 15 | 90 | 0.7 | 08 34 | 60 | 10 | - | 12 04 | 7 | 4 | 14 | 15 40 | 16 | 17 | 2 | Ω. | 9 | 4 | 20 | | 24 | 22 | 23 12 | 23 | | 00 | 01 | 02 | 03 | 04 30 | 25 27 | | | | | | | 4 | ٠ ، | 1 14 | 14 | 5 | 9 | F- | 00 | 0 | 9 | - | | 1 60 | 14 | 5 | - | 0 1 | 17 | 00 | 19 | 20 | 2 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 8 | 31 | | ## DURBAN – TIMES OF MOONRISE AND MOONSET FOR BLOEMFONTEIN ADD 19 MINUTES | | ET | 24 | 58 | 33 | 10 | 20 | 33 | 20 | 10 | 02 | 22 | 67 | 51 | 49 | 49 | 20 | | 54 | 29 | 90 | 12 | 15 | 14 | 07 | 54 | 36 | 15 | | 20 | 54 | 28 | | 33 | 60 | | |-----|--------------------------------|--|--|--|--|--|---
--	--	--	--
--	--	--	--
---	--	--	--
---	---	------	---
--	---	----------	------------
increasing distance from Jupiter, the four moons are Io, which orbits once around Jupiter in less than 2 days; Europa, $3\frac{1}{2}$ days; Ganymede, 7 days; and Callisto which takes 17 days for a full circuit. All the orbits lie in Jupiter's equatorial plane and the system is seen almost edge on. As the moons circle Jupiter, they appear to oscillate from side to side alternatively passing in front of and behind the planet. Their configurations change from night to night and are shown in the diagrams on pages 34 and 35. ## EVENTS RELATED TO THE MOONS PASSING IN FRONT OF AND BEHIND JUPITER The table below lists all events occurring between the end of twilight and just after midnight when the planet is above the horizon in Southern Africa. Explanation of table: Date and predicted times are given - these are for mid-phenomena and are not instantaneous. The moons concerned are I - Io III - Ganymede II - Europa IV - Callisto Phenomena - the abbreviations used are: Ec. - Eclipse: the satellite passes through the shadow of Jupiter D - Disappearance Oc. - Occultation: the satellite is obscured by the disk of Jupiter R - Reappearance Tr. - Transit: the satellite crosses the disk of Jupiter I - Ingress Sh. - Shadow transit: the shadow of the satellite transits the disk E - Egress		0	20h361
number of meteors observed. There is always the possibility of new showers occurring, and any large-scale meteor activity observed on dates other than those mentioned should be reported without delay. Reports by a reliable observer of the number of moteors seen coming from a particular radiant in a given period are always useful, but the best work is done by organised teams making a full sky coverage. "Fireballs" are meteors of a luminosity equalling or exceeding that of the brightest planets. Accurate reports of their path among the stars, or their altitude and azimuth, at specific times, are of great value, particularly if made by observers at different places along the trajectory. PREDICTED METEOR SHOWERS 1976	CTF		-----------------------------
The distinctive tail $\epsilon = \zeta = \theta$ curls round to the sting λ . - (2) Sagittarius the figure of the centaur archer is very difficult to make out. - (3) A section of the Ecliptic. Like Taurus, Scorpius and Sagittarius are constellations of the Zodiac. - 4 The direction of the centre of our Galaxy the Milky Way is that part of our Galaxy visible to us. Unfortunately the central nucleus is obscured by foreground gaseous and dusty matter both dark and luminous hence the irregular shape of the Milky Way in this region. Luminous nebulae include (5) the Lagoon nebula and (6) the Omega nebula. These are best seen with the aid of binoculars. - (7) Antares a distant red giant, several hundred times the diameter of our Sun is so named because its red colour rivals that of the planet Mars. - (B) β Scorpii can be resolved as a double star (separation 16 sec of arc) with a small telescope. In fact the brighter component is in itself a triple star, and the fainter component a double star! This region includes a number of galactic clusters including (9) M7, (1) M8, (1) M4 and (12) NGC 6067. (Use binoculars or a small telescope). Further from the plane of the Milky Way are some globular clusters: 13 M80 14 M19 and 15 M22. #### NOVA SEARCHING On rare occasions a star may undergo a nova outburst, its light increasing tremendously. The result is that a "new" star appears where previously no star was visible to the naked eye, or even with a small telescope. The light of the nova may fluctuate for a time, then gradually fades over a period of days, weeks or months. Even observers having no telescopes can perform a useful task in keeping a watch for such novae in an allocated area of the sky. A good knowledge of the constellations is a recommendation, since part of the procedure is to scan the whole sky for bright novae before the more detailed search in the allocated area is begun. However, anyone can be given training in star recognition. Interested persons should contact the Director of the Nova Search Section, Mr. J.C. Bennett, 90 Malan Street, Riviera, Pretoria 0002. #### VARIABLE STAR OBSERVING The General Catalogue of Variable Stars lists some 20 000 stars. Professional observatories cannot possibly monitor all of these and the observation of variable stars is a field therefore in which amateurs can make real contributions to astronomical knowledge. Of the 20 000 stars, at least 2 000 are suitable for monitoring by Southern Hemisphere observers but less than 200 are in fact observed from South Africa and a still smaller number receive adequate attention. The Variable Star Section of the ASSA exists for the purpose of encouraging observers and of acting as a medium of communication. The Section disseminates incoming information amongst observers and will forward (on request) the observations of individuals to various variable star bodies. These include the American Association of Variable Star Observers and the Variable Star Sections of the British Astronomical Association and Royal Astronomical Society of New Zealand. These bodies combine the South African observers' light estimates with those from other parts of the world. The resulting light curves and tables are sent to a large number of professional observatories where astronomers are interested in investigating certain of the stars more fully. In addition to the international work, the VSS of the ASSA supplies information direct to certain South African astronomers. It is in a position to warn observatories of sudden changes in certain "VIP" stars before the overseas bodies can do so. Some of these VIP stars are:	111661	RS Cen	145971
700 847 847	5.7 3.0 3.0	1 15	38 50 20 50 21
of star and Moon, in both right ascension and declination, as well as on the shape of the Moon. Some of these data cannot readily be obtained in any other way. The maps on the following pages have been prepared by H.M. Nautical Almanac Office to show the tracks of stars brighter than 7.5 magnitude which will graze the limb of the Moon when it is at a favourable elongation from the Sun and at least 10° above the observer's horizon (2° in the case of bright stars). Each track starts in the West at some arbitrary time given in the key and ends beyong the area of interest, except where the letters "A", "B", or "S" are given. "A" denotes that the Moon is at a low altitude, "B" that the bright limb interferes, and "S" that sunlight interferes. The tick marks along the tracks denote 5 minute intervals of time which, when added to the time at the beginning of the track, give the approximate time of the graze at places along the tracks. The tracks as shown on the maps are approximate only. Since the observer's location is very critical, successful observations call for very accurate predictions. With the aid of the IBM computer of the CSIR at Pretoria such predictions are at present prepared at 6-monthly intervals for a number of centres in South Africa, Rhodesia and Malawi. By plotting the predicted graze track on a reliable survey map (e.g. the South African 1:50 000 series) it is usually possible to select a convenient site from where the graze may be observed. Ideally a team of observers would be stationed at intervals along a line running at right angles to the graze track - say, along a main road - each with his own telescope and timing equipment. Each observer will see a different sequence of events, the combined results forming an accurate picture of the limb of the Moon. The equipment needed is similar to that used for ordinary (or 'total') occultations, but must, of course, be portable. A 75 mm refractor is ideal for average events, but better instruments with a larger aperture have often shown their superiority under difficult conditions. Timing is best carried out with a portable tape recorder and radio receiver tuned to ZUO or other time signal station. It will be seen from the maps that many grazing occultations occur in regions which are rather far removed from the main cities, and which cannot easily be reached by teams of observers from one of the ASSA centres. It is worth remembering, however, that a team of many observers, while ideal, is by no means essential; that a single good observer is worth more than many unsuccessful ones, and that one good observation is worth infinitely more than no observations at all. Observers in other parts of southern Africa - especially the more distant regions - who may be interested, are therefore invited to contact the coordinator for grazing occultations: Mr. J. Hers, 48, Central Road, Linden Extension, Randburg 2001, so that they may be informed of all favourable grazes occurring within their neighbourhood. ## JANUARY 1 TO MARCH 23	No	ZC	Mag.
lengthened second pulses) #### SOUTH AFRICAN STANDARD TIME South African Standard Time (as in everyday use) is mean solar time for the 300 East moridian (which runs east of Johannesburg and just west of Durban) and is exactly 2 hours ahead of Universal Time. #### TIME OF SUN'S TRANSIT OVER THE 300 MERIDIAN The table below gives the SAST when the Sun transits the $30^{\rm O}$ meridian - and a sundial on that meridian reads noon.	Jan	1	12 ^h
882	912	943	973