Extrasolar Planets

John Menzies SAAO

Outline

- Solar System
- Exoplanets
- Search Methods Transits Microlensing Timing
- Planet formation, habitable zone

What is a Planet?

- Solar System Planet (IAU 2006)
 - orbits Sun,
 - massive enough to be round (hydrostatic equilibrium),
 - has cleared neighbourhood of debris,
 - not satellite of a larger object
- Dwarf planet
 - has not cleared neighbourhood
- Small Solar System Body
 - remnant of collision or failed assembly
- Extrasolar planet
 - Mass<13 M_{Jupiter} (
 - Not free floating

Largest known trans-Neptunian objects (TNOs)

Dysnomia

Eris

Charon Hydra

Nix

Pluto

Makemake

2007 OR₁₀

Sedna

Planets have 'cleared out' their orbits

Inner planets + Jupiter

Outer planets

CREDIT: Habitable Exoplanets Catalog, PHL @ UPR Arecibo (phl.upr.edu) Oct 2012

Solar System comparisons

Name	Mass	Period (year)	Orbital Radius (AU)
Sun	1000	-	-
Mercury	0.00016	0.24	0.4
Earth	0.003	1	1
Jupiter	1	11.9	5.2
Neptune	0.05	165	30

- We know there are extrasolar planets
- Are there extrasolar planetary systems like the Solar System?
- Are there Earth-like planets, or planets in the habitable zone?

What is a Planet?

- Extrasolar planet (controversial)
 - Mass<13 M_{Jupiter} orbiting star or stellar remnant
 - Minimum mass for Deuterium burning
 - 75 M _{Jupiter} minimum mass for H burning
 - Brown dwarf
 - Depends on how assembled (gas collapse or rock/ice accretion)
 - Not free floating

Search Methods

Direct imaging

Dynamical methods

Radial velocity – motion along line of sight

Astrometry – motion in plane of sky

Photometric methods

Transits – photometry of parent star

- Microlensing photometry of background star
- Timing variation in periodic behaviour of object, e.g. pulsar binary, variable star, eclipsing binary
- Polarimetry asymmetric mass distribution, light scattered off planet may be polarised

797 Exoplanets / 629 Stars

Distribution of Mass with Period

CREDIT: Habitable Exoplanets Catalog, PHL @ UPR Arecibo (phl.upr.edu) Oct 2012

Planetary Transits

- •Planet moves in front of parent star
 - Reduction in light received (~1-2%)
 - Requires almost edge-on orbit
- •Derived parameters:
 - Period, diameter of planet, revolution axis, semi-major axis
 - atmospheric properties, surface temperature, chemical composition
 - With mass from RV can find density

Transit Photometry

$$(Spectrum \square L_*,M_*,R_*)$$

$$AL/L_* = (R_{pl}/R_*)^2 \square R_{pl}$$

$$P_{pl},M_* + Kepler's Law \square a_{pl}$$

$$t_tr = P_{pl} (R_*cos\delta + R_{pl})/(\pi a_{pl})$$

$$\Box \delta$$

$$cos i = R_* sin \delta / a_{pl} \square i$$

$$(\delta = 90^\circ \rightarrow i_{min})$$

$$Star M_*, i, RV amplitude \square M_{pl}$$

$$M_{pl}, R_{pl} \square P_{pl}$$

HD209458b

Parent Star: G star, 154 lyr Pegasus

Planet: a = 0.045 AU P = 3.52474541 (25)day i = 86°

M = 0.69 M_J R = 1.35 R_J T = 860 °C

Nature of Planet

Models with likely composition of planets, calibrated wrt Solar system

Allows gross characteristics of planet to be determined

Most are 'hot' Jupiters, but rocky planets are now being found

KELT-South (Vanderbilt U)

- Robotic
- 42mm f1.9
- 26° x26° field
- ~100000 stars/image
- V=6-12, 150 sec
- ~80000 useable

EQUATORIAL SKY CHART

SuperWASP South

- 8x111mm f1.8
- 85mm f1.2 r-band
- 18° x 18° per camera
- V=7.5 9.5

а

0.8

Transit phase

Kepler

7.5 year mission
100000 stars
Transits

(need 3 eclipses to verify transit)
Can detect Earthmass planets

Launched May
2009

NASA's first mission capable of finding Earth-size and smaller planets

CREDIT: Habitable Exoplanets Catalog, PHL @ UPR Arecibo (phl.upr.edu) Oct 2012

Microlensing

- Deflection of light from background star by intervening mass
- •Einstein (1936) stellar lensing; General Relativity
 - Probability 10⁻⁸ in nearby general field

(observe 10⁸ stars guarantees 1 event)

"Of course, there is no hope of observing this phenomenon directly."

Technical advances:

- image large areas with CCDs,
- increased computing power,
- realtime photometry of millions of stars with high precision in crowded fields (probability ~10⁻⁶)
- realtime modelling of ongoing events

Microlensing Geometry

Image shapes

Einstein ring

For Source at ~8 kpc Lens ~ 4 kpc

Diameter of Einstein ring ~ 0.001 arcseconds

Best resolution ~0.1 arcsec Only see combined light Amplification

Light Curve – Source, Lens in relative motion

Typically ~30-50 days for Bulge source, stellar lens; ~1 day for Jupiter mass

mass ratio q=1.0

Binary separation effects

OGLE-2005-BLG-390

Planetary signal –

small deviation from ideal point source, point lens model In this case owing to a ~5 Earth mass planet (0.015M_J) at a distance of ~3 AU from the parent star (M type)

1.6 planets (5M_e-10M_J) per star in Galaxy!!

PLANET microlensing result

Pulsar Timing

Project Solaris

GLOBAL TELESCOPE NETWORK

http://www.projectsolaris.eu

Eclipsing Polar, UZ For

Potter et al, 2011

Extraterrestrial life

